festival-freebsoft-utils

for version 0.10

Milan Zamazal
Brailcom, o.p.s.

This manual is for festival-freebsoft-utils, version 0.10.
Copyright (©) 2004, 2005, 2006, 2007, 2008 Brailcom, o.p.s.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

Alternatively, you can distribute this manual under the same conditions as festival-freebsoft-
utils itself:

festival-freebsoft-utils is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option) any
later version.

WAusers is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
St, Fifth Floor, Boston, MA 02110-1301 USA.

Table of Contents

1 Motivation......... 1
2 Installation............ 2
3 User Customization.............................. 3
3.1 The Concept of Events i, 3
3.2 Word Substitution.............oiiii i 4
3.3 Signalling Capital Characters.................oiiiiiiiiiii... 4
3.4 Reading Punctuation Characters................. ..ot 4
3.5 Avoiding Initial Pauses........ ... i 5
3.6 ToKkenizationouuiiii 5
3.7 Voice SeleCtion . ..ot 5
3.8 Using with Speech Dispatcher 6
4 Reference Manual................................ 7
4.1 UbIlSCIL . oo 7
4.2 Wave form handling.......... i 9
4.3 00.SCIIL . v ettt et et 10
4.4 eVENES.SCITL . ot vttt ettt e ettt e 11
4.5 spell-mode.Scm 11
4.6 cap-signalization.scm o o i i 11
4.7 punctuation.SCIMoovttt e 12
4.8 tOKENMIZE.SCIIL . .\ ottt e e 12
4.9 MUultiWave.SCIML . .. oot 12
4.10 voice-SeleCt.SCIMt 13
4.11 Prosody-Paraml.SCITL. vvvrttt et et et e e eeeeeeanns 14
4.12 ssml-mode.SCIMLot 15
4.13 fleI0.SCIN . . oottt 16
4.14 TECOAC.SCINL . oottt et 16
4.15 speech-dispatcher.scmo i 17
5 Howtocontactus.............................. 18

Appendix A GNU Free Documentation
License...... 19

1 Motivation

Festival is a powerful and extensible speech synthesis system, able to handle the whole text-
to-speech process. The aim of festival-freebsoft-utils is to further extend Festival facilities,
to the level providing complete set of features required by Speech Dispatcher Manual. As a
side effect, festival-freebsoft-utils introduces interesting functionality, generalizing the text-
to-speech system to a text-to-sound system.

Festival is well suited to the speech synthesis process itself, but lacks some end-user
features, especially those needed for application sound output. festival-freebsoft-utils tries
to fill this gap, thus making Festival suitable for screen readers and other speech output
software, used especially by the blind and visually impaired people.

Main features of festival-freebsoft-utils are:

e Generalized concept of input events. festival-freebsoft-utils allows not only plain text
synthesis, but also insertion of sounds and logical event mapping.

e Spell mode.

e Capital letter signalling.

e Punctuation modes, for reading or not reading punctuation characters.

e Function wrapping support.

e Speech Dispatcher Festival output interface. For more information about Speech Dis-
patcher, see http://www.freebsoft.org/speechd or Speech Dispatcher manual.

Up-to-date information about festival-freebsoft-utils can be found at its home page
http://www.freebsoft.org/festival-freebsoft-utils/.

http://www.freebsoft.org/speechd
http://www.freebsoft.org/festival-freebsoft-utils/

2 Installation

festival-freebsoft-utils was tested with Festival 1.4.3. Other versions of Festival may or may
not work.

Having SoX (http://sox.sourceforge.net) installed is strongly recommended, many
festival-freebsoft-utils functions don’t work without it.

As Festival does not support UTF-8 encoding, festival-freebsoft-utils uses the iconv util-
ity for character coding conversions. iconv is a standard part of some (e.g. GNU) operating
systems, if you don’t have it you can install it as a part of the libiconv library available at
http://wuw.gnu.org/software/libiconv/.

Installation itself is easy, just copy all the *.scm files to one of the directories present in
the Festival’s load-path. This is typically /usr/share/festival/, you can get the exact
list of the directories by evaluating load-path in the Festival command line interface. Then
you can load the whole system at Festival startup by adding the line

(require 'speech-dispatcher)

to the Festival initialization file (typically /etc/festival.scm system wide or
~/.festivalrc for a particular user). Note you needn’t do this for Speech Dispatcher
operation as Speech Dispatcher invokes this call itself.

http://sox.sourceforge.net
http://www.gnu.org/software/libiconv/

3 User Customization

You can customize festival-freebsoft-utils through several user variables described in the
following sections. This chapter is primarily focused on Speech Dispatcher users and other
users not using festival-freebsoft-utils directly. For a complete usage description see Chap-
ter 4 [Reference Manual], page 7.

Most of the extensions presented here don’t work with usual Festival functions such as
SayText, which are too limited in their use. You must use either the Speech Dispatcher
functions, Section 4.15 [speech-dispatcher.scm], page 17, or the event speaking functions,
Section 4.4 [events.scm|, page 11, to utilize the features like word substitution, capital
signalling or punctuation modes.

3.1 The Concept of Events

Default Festival interfaces expect text on their inputs, either in a plain form or in the form
of some markup. The event module generalizes the concept of input to events. Event is a
general input object that can represent not only text, but also a pre-defined sound or an
object just mapping to another input object.

Currently the following kinds of events are supported:
text Text. The event value is a string containing the given text.

ssml Text represented in the SSML 1.0 markup. The event value is a string con-
taining the given text. Please note that festival-freebsoft-utils does not provide
conforming SSML implementation and implements only a limited subset of the
standard. Moreover, due to the limitations of the built-in Festival XML parser,
SSML markup texts must be provided in the target encoding of the document
languages.

sound Sound icon. The value is a string containing a file name of a sound file, either
absolute, or relative to the sound-icon-directory variable value.

character
Single character. The value is a string containing the character.
The difference between character events and text events is that characters may
be spoken in a different way than ordinary single-letter texts.

key A key (as on keyboard). The value is a string containing key description in the

format defined by the Speech Synthesis Interface Protocol, SSIP.

logical Symbolic event name, usually mapped to another event. The value is an arbi-
trary symbol. Logical event values starting with the underscore character are
considered special and shouldn’t be generally used. See Section 4.4 [events.scm],
page 11, for more details.

Any event may be mapped to another event. Before festival-freebsoft-utils functions
process an event, they check for its mapping and if the event is mapped to another event,
it is replaced by the target event. Event mapping is defined by the following variable:

event-mappings
Maps events of any supported kind (i.e. logical, text, sound, character, key) to
other events (typically to text or sound events). All logical events used must be

Chapter 3: User Customization 4

defined here, other kinds of events are processed in some default way if there
are not defined in this variable.

The variable contains an alist whose elements are of the form (event-type
mappings). event-type is one of the symbols logical, text, sound, character,
key. mappings is an alist with the elements of the form (value new-event-
type new-event-value).

See the default variable value for an example.

For a convenience, there is a function that allows you to add or replace single event map-
pings in the event-mappings variable in an easier way than redefining the whole variable
value:

set-event-mapping! event-type event-value new-event-type new-event-value
Ensure the event of event-type and event-value is mapped to the event of new-
event-type new-event-value.

Example:

(set-event-mapping! 'logical 'hello 'text "Hello, world!")

3.2 Word Substitution

You can map words to events. This is useful especially when you want to replace some
words by sounds.

word-mapping
Alist mapping words to events. Each entry of the list is of the form ("word"
event-type event-value). If word is encountered in the input text, it is
replaced by the given event.

3.3 Signalling Capital Characters

When capital character signalling is enabled, Section 4.6 [cap-signalization.scm], page 11,
capital characters are signalled via the capital logical event. By default the event is
mapped on the sound event capital. If you want to change it, change the logical mapping,
as is described in Section 3.1 [Events], page 3.

For example, the following code in your ~/.festivalrc changes the sound signalling to
saying the word capital:

(require 'events)
(set-event-mapping! 'logical 'capital 'text "capital")

3.4 Reading Punctuation Characters

Through the punctuation modes, Section 4.7 [punctuation.scm|, page 12, you can force
Festival to speak all punctuation characters. Since the default English voices don’t have
defined pronunciation of some punctuation characters, it is provided through the following
variable:

punctuation-pronunciation
Alist of punctuation characters and their word forms. Each entry in the list
is of the form ("character" "word" ..., where character is the pronounced

Chapter 3: User Customization 5

character and words are the words of its pronunciation. Please note you must
put each word inside separate double quotes. Example entry:

("1 "exclamation" "mark")

3.5 Avoiding Initial Pauses

Festival inserts initial pause in each synthesized utterance. There is a good reason for it—
speech starts from silence and thus the first diphone of the synthesized sample should be
pause-first phoneme.

However there are some situations when the initial pause is undesirable. For instance,
when reading characters in a speech enabled editor, the initial pauses slow down the reading.
So festival-freebsoft-utils provide a way to disable the initial pause by making its effective
duration zero.

First, you must load the corresponding code:
(require 'nopauses)

After this, there is a variable available controlling the initial pause insertion:

inhibit-initial-pauses
When set to a non-nil value, initial pauses are inhibited.

3.6 Tokenization

If you use the festival-freebsoft-utils tokenizer instead of the Festival built-in tokenizer, you
can put additional limits on the tokenization process besides the eou_tree.

max-number-of-tokens
Maximum number of tokens in a single utterance. Utterance chunking is per-
formed in such a way that each produced utterance contains at most this number
of tokens.

max-number-of-token-chars
Maximum number of characters within a single token. If a token contains more
characters than is stated by this limit, it is split into smaller tokens.

3.7 Voice Selection

You can configure languages and voices used by the SSML, Speech Dispatcher and other
interfaces supporting the mechanism with the following variables:

language-codes

Alist mapping ISO language codes to Festival language names. Each alist en-
try is of the form ("language-code" language-name), where language-code
is an ISO language code as used by Speech Dispatcher and language-name is
the corresponding Festival language name. Optionally, the alist elements can
have the extended form (language-code language-name . dialects), where
dialects is a list of pairs (dialect-code dialect-name). dialect-code is the
part of the language code after a hyphen or underscore and dialect-name is the
dialect name used by Festival voices.

Chapter 3: User Customization 6

voice-select-defaults
Alist of default voice parameters. Each alist entry is of the form (name value),
where value can be either the actual parameter value or nil, meaning the value
is unspecified.

3.8 Using with Speech Dispatcher

One of the primary goals of festival-freebsoft-utils is to serve as a Speech Dispatcher interface
to Festival. festival-freebsoft-utils is required by Speech Dispatcher for the use of Festival
as the speech synthesis backend.

In order to use festival-freebsoft-utils with Speech Dispatcher, you need not to make any
special festival-freebsoft-utils arrangements. Just configure it as is described in the previous
sections. It is particularly recommended to configure available languages if you want to use
Festival for other languages than English, See Section 3.7 [Voice Selection], page 5.

This version of festival-freebsoft-utils requires Speech Dispatcher 0.5 or higher.

4 Reference Manual
festival-freebsoft-utils consists of several modules described in the following sections.

4.1 util.scm

This module contains miscellaneous utilities useful in general SIOD and Festival program-
ming.

Macros and functions mostly available in Lisp dialects:

when condition body-form ...
If and only if condition is true, evaluate body-forms.

unless condition body-form ...
If and only if condition is false, evaluate body-forms.

progl form ...
Evaluate all forms and return the return value of the first one.

let* bindings body-form ...
The same as let except that variable bindings are applied sequentially rather
than in parallel.

unwind-protect* protected-form cleanup-form ...
Evaluate protected-form, and after it is finished, whether successfully or with
errors, evaluate all cleanup-forms. If protected-form was evaluated successfully,
return its return value.

Unlike Festival’s unwind-protect, unwind-protect* accepts multiple cleanup-
forms and evaluates them even when protected-form doesn’t signal an error.

first list
second list
third list
fourth list
Return first, second, third or fourth element of list, respectively.

butlast list
Return the list without its last element. If list is empty, return an empty list.

min x y Return minimum of the two numeric values x and y.
max x y Return maximum of the two numeric values x and y.
abs x Return absolute value of x.

remove-if test list
Return list with elements, for which the test call returns non-nil, removed.
The order of list elements is preserved. test must be a function of a single
argument.

identity object
Return object.

Chapter 4: Reference Manual 8

complement function
Return a function that is equivalent to function except that it returns the
opposite truth value to the return value of function.

apply* function arglist
The same as apply, except that it also works if function is given as a string.

dolist (var items) body-form ...
Loop over items and perform body-forms over each of them, binding it to the
variable var (unevaluated).

add-hook hook-variable hook-function to-end?
Add hook-function to hook-variable if it is not already present there. hook-
variable must be a variable containing a list. If to-end? is true, add hook-
function to the end of the list contained in hook-variable, otherwise add it to
the beginning.

assoc-set list key value
Add the key-value pair to the association list and return the resulting list.
Contingent previously list entries stored under key are removed from the re-
sulting list.

avalue-get key alist
Find the first alist element of the form (key* value), where key* is string-
equal to key, and return value.

avalue-set! key alist value
Destructively set the value® of the first alist element of the form (key* valuex)
to value. Return alist.

avg . args
Return average value of args.

dirname path
Return the directory part of path.

make-temp-filename template
Return name of a (probably non-existent) temporary file. template is a base-
name of the file, that is formatted with the format function and must contain
exactly one s sequence to be replaced with a variable part of the file name.

Actually, this function is somewhat limited by the available Festival system
interface. So it is not safe, the file may be created before it is actually used or
the function may fail with an error. But for simple purposes the function should
work fine and it shouldn’t be worse than the standard make_tmp_filename
function.

with-temp-file filename body
Macro that binds newly generated temporary file name to a local variable file-
name and then performs body. The macro ensures the temporary file is deleted
after finishing body in any way.

string-replace string from to
Replace all occurrences of from by to in string and return the result.

Chapter 4: Reference Manual 9

Festival specific utilities:

item.has_feat item feature
Return true if and only if item has feature set.

langvar symbol
Return language dependent value stored under symbol. First, the variable
named symbol.language, where language is the language name as stored in the
Language parameter is checked and if it is unbound, symbol’s value is returned.

current-voice-coding
Return character coding of the currently selected voice in Festival. The coding
is taken from the coding attribute of the voice description, if it is undefined or
nil, ISO 8859-1 coding is assumed. The coding voice attribute is introduced
by festival-freebsoft-utils, it is not a standard Festival feature.

utt-relation-top-items utt relation
Return a list of top level items in relation in utt.

do-relation-items (var utterance relation) body-form ...
Loop over relation items of utterance, performing body-forms for each of them,
binding it to the variable var. The macro arguments var and relation are not
evaluated.

do-relation-top-items (var utterance relation) body-form ...
Similar to do-relation-items, but loops only over the relation’s top items.

4.2 Wave form handling

There are some utility functions to help handling wave forms:

wave-concat waves
Append wave forms and return the resulting wave form. waves must be a list
of wave forms to append.

wave-subwave wave from-time to-time
Return the part of wave form that starts at from-time and finishes at to-time.
Both times are in seconds.

wave-load filename
Load and return a wave form from filename. This function is similar to
wave. load, but more sound file formats (most significantly Ogg Vorbis, if your
SoX installation supports it) can be loaded.

wave-utt wave
Create and return an utterance, that contains just the Wave relation holding
wave.

wave-import-utt filename
Create and return an utterance, that contains just the Wave relation holding a
wave loaded from filename via the function wave-load.

Chapter 4: Reference Manual 10

4.3 oo.scm

Sometimes it is useful to extend a Festival function in some way. Standard Festival functions
don’t provide easy to use means for it. This module tries to fill the gap.

The following macro allows you to wrap a defined function:

define-wrapper (function arg ...) wrapper-name . body)
Wrap function with arguments arg ... by the code body. Given function argu-
ments must match the arguments of the wrapped function. wrapper-name is
a symbol uniquely identifying the wrapper, it allows redefinition of the wrap-
per. One function can be wrapped by any number of wrappers. None of the
define-wrapper arguments is evaluated.

Within body, a function named next-func is automatically defined. It returns
the next wrapper or the original function. Please note next-func is a function,
not a variable, so its typical invocation looks as follows: ((next-func) arg

.

oo-ensure-function-wrapped function-name
If a wrapped function gets redefined, its wrapper is lost. If you want to ensure
the function is still wrapped before its use, you may call this function, with its
symbol name as the argument.

oo—unwrapped function-name
Return the original definition of a wrapped function.

Example use:

festival> (define (foo x) (+ x 42))

#<CLOSURE (x) (+ x 42)>

festival> (foo 1)

43

festival> (define-wrapper (foo x) my-foo-wrapper (print "Foo called.") ((next-func) x)
nil

festival> (foo 1)

"Foo called."

43

You can also wrap parameters, set by Param.set:

Param.wrap name wrapper—name . body
Wrap access to parameter name by code body. If the given parameter is ac-
cessed, its wrapper is invoked instead of just returning the parameter value.
wrapper-name is the same as in define-wrapper.

Macro next-value is automatically defined within body. It returns the param-
eter value, either plain or modified by another wrapper.

Example use of parameter wrapping:
festival> (Param.set 'foo 42)
#<feats 0x8169950>
festival> (Param.wrap foo foo-w (+ (next-value) 1))
nil

Chapter 4: Reference Manual 11

festival> (Param.get 'foo)
43

And finally, the glet* macro allows you to dynamically bind a global variable value:

glet* bindings . body
Similar to let* (see Section 4.1 [util.scm], page 7) except that the variables in
bindings are bound dynamically instead of lexically. All variables in bindings
must be global variables.

4.4 events.scm

For introductory and configuration information about events see Section 3.1 [Events|, page 3.
The event module provides the following functions to synthesize events:

event-synth type value
Synthesize event of type, which may be one of the following symbols: logical,
text, sound, character, key. event is the event value that must correspond
to the event type.

event-play type value
Play event. The type and value arguments are the same as in event-synth.

Logical events starting with underscore are reserved for special purposes. Currently, the
following special purpose logical events are recognized:

_debug_on*
Turn on debugging. That means every processed event is logged. _debug_off
is just a prefix, it can be followed by any symbol constituent characters.

_debug_offx*
Turn the debugging off. _debug_off is just a prefix, it can be followed by any
symbol constituent characters.

4.5 spell-mode.scm

Defines spelling mode, i.e. the mode in which the input text is spelled rather than read in
the usual way. The spell mode is a normal Festival mode, so you can use it after loading
this module immediately, e.g.

(tts_file "file" 'spell)

4.6 cap-signalization.scm

Defines mode that allows signalling of capital letters through the logical event capital. See
Section 3.3 [Capital Letters], page 4, for more details.

set-cap-signalization-mode mode
If mode is true, enable capital letter signalling, otherwise disable it.

Chapter 4: Reference Manual 12

4.7 punctuation.scm

Sometimes it is useful to get read all the punctuation characters present in the synthesized
text (for exact information about the text) and sometimes it is useful to read no punctuation
character (for faster reading). Punctuation modes allow you to tell Festival, whether it
should read punctuation characters or not.

set-punctuation-mode mode
Set punctuation mode to mode. mode may be one of the following symbols: all
meaning all the punctuation characters are read, none meaning no punctuation
characters are read, and default that switches to the default Festival behavior
corresponding to the current language and voice.

See Section 3.4 [Punctuation Characters|, page 4, for information about punctuation
mode configuration.

4.8 tokenize.scm

Festival’s tokenization is implemented mostly in C++, so it is impossible to use it when
extending Festival. The tokenize module provides an alternative tokenization implemented
in SIOD, that can be used wherever needed.

next-chunk text
Get the next part of text and create an utterance containing the corresponding
tokens. A list of two elements, the utterance and the remaining unprocessed
part of text, is returned.

An alternative SayText function, splitting the text into smaller pieces (and thus speeding
up the start of speech) might be implemented as follows:

(define (SayText* text)
(if (not (equal? text ""))
(let ((utt-text (mext-chunk text)))
(let ((utt (car utt-text))
(text (cadr utt-text)))
(utt.play (utt.synth utt))
(SayText* text)))))

4.9 multiwave.scm

Sometimes it is convenient to return multiple synthesized wave forms instead of a single
wave form. There are two typical situations when this can happen:

e You want to synthesize a long text and you don’t want to wait until it is all synthesized,
you want to play the resulting audio as soon as possible. The text can be cut into
smaller pieces, returning the corresponding wave forms in a sequence.

e The resulting wave form is a mixture of a synthesized texts and sound icons, of different
rates or other sound sample parameters. Concatenating them together may reduce the
resulting sound quality. So the different sound parts may be better returned separately.

The multiwave.scm module provides the following interface for those purposes:

Chapter 4: Reference Manual 13

multi-synth type value
This function is similar to the event-synth function (see Section 4.4
[events.scm], page 11), except that it doesn’t return an utterance containing
the resulting wave form. Instead, it setups the synthesis for the following
multi-next calls.

multi-next
Return the next wave form of the last event synthesized via the multi-synth
function. If there is no next wave form, return nil.

If you synthesize an SSML text, the function may return a non-nil symbol
instead of a wave form. Then the symbol is a name of the mark just reached.

multi-clear
Throw away the synthesized data. You usually don’t need to call this function
as the data is cleared on the next multi-synth call automatically, but the
function may be useful under special circumstances.

4.10 voice-select.scm

The voice-select module provides a mechanism for voice and language selection. For its
configuration information, see See Section 3.7 [Voice Selection], page 5.

The following voice selection functions are available:

voice-list
Return the list of names of all available voices. Unlike the list returned by the
standard Festival function voice.list, the list includes all registered voices.

voice-list-language-codes
Return the list of names, language codes and dialect codes of all available voices.
Each element of the returned list is of the form (name language-code dialect-
code), where all the elements of the tripple are symbols. If the language code
or the dialect code is not known for the voice, the corresponding element is nil.

current-language-voices
Return a list of all the voices available for the current language.

select-voice language dialect gender age variant name
Select voice according to the specified parameters and return its name. language
is the language name, dialect is a language dialect name. gender can be one of
the symbols male or female (the value is currently ignored). age is age of the
speaker in years given as a number. variant is a positive integer that selects
one of several voices, if more than one voice is selected by all other parameters.
name can be a particular voice name.

Each of the function arguments can have nil as its value. In such a case, default
value of the corresponding parameter is used. If there is no default value, the
parameter is not considered in the selection process.

If more than one voice matches, one of the matched voices is selected. If no
voice satisfying all the given parameters is available, some voice satisfying the
most important parameters is selected.

Chapter 4: Reference Manual 14

select-voice* lang-code gender age variant name
Like select-voice, except that language and dialect are specified by an ISO
lang-code.

reset-voice
Reset currently selected voice parameters to their default values.

Additionally, there is a variable holding information about voice properties currently in
effect for the purpose of voice selection by the voice-select function:

voice-select-current-defaults
Alist containing current voice properties used by voice selection.

4.11 prosody-param.scm

Ever wished to be able to change prosodic parameters in Festival easily and in a uniform way
for different voices? Well, here are the appropriate functions. They are no way guaranteed
to work for all voices, since each voice can have its own unique way of prosody handling.
But they should work for typical cases.

set-pitch value
Set mean pitch of the voice to value and return the old pitch value. value is
given in Hertz.

set-pitch-range value
Set the pitch range of the voice to value and return the old pitch range value.
The value is in percents of the mean pitch, its clear meaning is not defined.

set-volume value
Set volume to the given value and return the old volume value. value must be
in the range 0-1 from silence to maximum (the default).

set-rate value
Set voice rate to value and return the old rate value. value is in the range
0.1-10 from the slowest to the fastest. The value 1 corresponds to the normal
voice speed, other values multiply the voice speed appropriately.

The value argument of all the functions above may also be a function of a single ar-
gument accepting the current parameter value and returning its new value. The following
convenience functions return functions which adjust the parameter values appropriately:

prosody-shifted-value shift
Return a function modifying the value by adding shift to it.

prosody-relative-value coef
Return a function modifying the value by multiplying it by coef.
Example setting doubling the current voice speed:
(set-rate (prosody-relative-value 2))

When you switch to a different voice, prosody parameters get lost. festival-freebsoft-utils
offers a way to restore them, using the following functions:

Chapter 4: Reference Manual 15

change-prosody function value
Similar to the set-* functions described above, except it additionally saves
the set prosodic value. function is one of the set-* functions and value is its
parameter value.

restore-prosody
Set prosodic parameters according to their current saved values.

reset-prosody
Reset the list of the saved prosodic values. Note, it just deletes the saved
settings and doesn’t actually change the current prosodic parameters.

4.12 ssml-mode.scm

festival-freebsoft-utils provides a text processing mode partially supporting the SSML 1.0
markup. You can process a SSML file in the following way in the Festival prompt:

(tts_file "/the/path/to/the/file" 'ssml)

Moreover, there are some particular SSML processing functions available:

ssml-say text
Speak the given SSML text.

ssml-parse text
Parse the given SSML text for later processing by the ssml-next-chunk func-
tion.

ssml-next-chunk
Return next utterance containing tokens from the last SSML text parsed by
ssml-parse or a mark name. If there is no next utterance or mark, return nil.
The returned utterance contains only the Token relation and is intended to be
further processed with the utt.synth function. The returned mark name is a
non-nil symbol.

ssml-speak-chunks
Speak the SSML text processed by ssml-parse.

The ssml-parse and ssml-next-chunk functions are intended to be used when you
want to synthesize an SSML text, but not to speak it immediately. A sample use of those
functions for a hypothetic ssml-say* function similar to ssml-say might be as follows:

(define (ssml-say* text)
(ssml-parse text)
(ssml-say*-1))

(define (ssml-say*-1)
(let ((utt (ssml-next-chunk)))
(if utt
(begin
(cond
((symbol? utt)
(print utt))

Chapter 4: Reference Manual 16

(utt
(utt.play (utt.synth utt))))
(ssml-say*-1)))))

If you need quick synthesizer response, avoid the DOCTYPE declaration in your SSML
data. The DOCTYPE declaration takes an observable time when processed in the Festival’s
XML parser.

festival-freebsoft-utils does not provide conforming SSML implementation and imple-
ments only a limited subset of the standard. Moreover, due to the limitations of the built-in
Festival XML parser, SSML markup texts that contain non-ASCII characters can only be
processed with the ssml-parse and ssml-next-chunk functions and must be provided in
the UTF-8 encoding.

It is not easy to fully support SSML in Festival. Contingent support and contributions
are welcome.

4.13 fileio.scm
Functions in this module try to help to improve Festival file input/output.

with-open-file (variable filename &optional how) body-form ...
Open file named filename in mode how (for reading if not provided) and bind
it to a newly created local variable. Execute body-forms in that context.

read-file filename
Read and return whole contents of the file named filename.

write-file filename string
Write string to a file named filename.

make-read-line-state
Create and return a state object required by the function read-line.

read-line file state
Read a single line from file and return it without the final newline character.
If there is no next line in file, return nil. state is a state as initially returned
by the make-read-line-state function.

The typical read-1line usage idiom is:

(let ((state (make-read-line-state))
(f (fopen "..."))
(line t))
(while line
(set! line (read-line f state))

S)

4.14 recode.scm

Festival doesn’t support different character sets directly. But it is 8-bit clean and you can
use whatever character coding you like if you can process it in the form of 8-bit characters.
The recode. scm module offers the following functions to convert between different character
sets:

Chapter 4: Reference Manual 17

recode string from-coding to-coding
Return given string, originally encoded in from-coding, recoded to to-coding.

recode-utf8->current string
Return given string, originally encoded in UTF-8, recoded to the coding of the
current voice.

Before applying normal recoding this function translates strings as specified
in recode-special-utf8-translations variable. This allows you to convert
some unicode characters in a special way, e.g. to translate empty space to space
(thus separating words around it). recode-special-utf8-translations con-
tains lists of two elements, the converted substring and its translation.

The recoding functions use the iconv program and temporary files to convert between
character sets. There is no known better way to do the conversions.

4.15 speech-dispatcher.scm

This module provides Speech Dispatcher interface. You need it if you want to use Festival as
a Speech Dispatcher output text-to-speech system. The module defines functions required
by the Speech Dispatcher Festival output module and user configuration variables, see
Section 3.8 [Speech Dispatcher], page 6.

To ease debugging, for each Speech Dispatcher function which returns a wave form, there
is defined a corresponding function of the same name with star appended, that returns an
utterance instead of wave form. For instance, the function speechd-speak returns a wave
form (and can be used only in server mode), while the function speechd-speak* returns
an utterance.

18

5 How to contact us

The author of festival-freebsoft-utils is Milan Zamazal pdm@freebsoft.org. The home page
of festival-freebsoft-utils is http://www.freebsoft.org/festival-freebsoft-utils/.

You can contact us with your comments, questions, suggestions, patches or anything at
the Speech Dispatcher mailing list speechd@freebsoft.org. Bug reports can be sent to
the e-mail address festival-freebsoft-utils@bugs.freebsoft.org.

festival-freebsoft-utils is part of the Free(b)soft project aimed at making computers ac-
cessible to blind and sorely visually impaired people. The home page of the project is
http://wuw.freebsoft.org.

mailto:pdm@freebsoft.org
http://www.freebsoft.org/festival-freebsoft-utils/
mailto:speechd@freebsoft.org
mailto:festival-freebsoft-utils@bugs.freebsoft.org
http://www.freebsoft.org

19

Appendix A GNU Free Documentation License

Version 1.2, November 2002

Copyright (©) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

Appendix A: GNU Free Documentation License 20

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

Appendix A: GNU Free Documentation License 21

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

Appendix A: GNU Free Documentation License 22

o

N.

0.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

Appendix A: GNU Free Documentation License 23

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

Appendix A: GNU Free Documentation License 24

10.

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 25

A.1 ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled ~~GNU
Free Documentation License''.
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Index
_debug_off 11
debUg_On ...t 11

abs X .o 7
add-hook hook-variable hook-function

to—end?. 8
apply* function arglist....................... 8
assoc-set list key value..................ouun. 8
author......... 18
avalue-get key alist 8
avalue-set! key alist value................... 8
AVE « A5 . ittt 8

C

change-prosody function value............... 15
character 3
complement function........................... 8
contact 18
current-language-voices..................... 13
current-voice-coding............ ...l 9

D

define-wrapper (function arg ...)

wrapper-name . body) 10
dirname path................ oo 8
do-relation-items (var utterance relation)

body-form il 9
do-relation-top-items (var utterance

relation) body-formcoo... 9
dolist (var items) body-form 8
E
eou_tree oo ol 5
event-mappings ...ttt 3
event-play type value......................n. 11
event-synth type value....................... 11
events ... o ool 3

26

F

FDL, GNU Free Documentation License........ 19
Festival ... i 1
first 1ist 7
fourth Iistt 7
Free(b)soft projectcocoiiiiiii... 18

G

glet* bindings .

H

homepage.........cooiiiiiii i 1

I

identity object... ..ottt 7
inhibit-initial-pauses....................... 5
item.has_feat item feature 9

K

language-codes, 5
languages ... i 5
langvar Ssymbol..........c.cviiiiiiiiiiiiiiiai.. 9
let* bindings body-form 7
logical 3
long texts.oovvi i 12
looping ..o 8,9

M

mailing List o i 18
make-read-line-state 16
make-temp-filename template.................. 8
math functions........... 8
MAX X J oottt et 7
max-number-of-token-chars.................... 5
max-number-of-tokens.............. 5
MIN X F ettt e 7
multi-clear...........ciiniiiiiiii i 13
multi-next....... ... 13
multi-synth type value....................... 13

multiple wave forms............................ 12

Index

N

next-chunk text........covviieirneennennnnnnn. 12
next-func....... 10
nexXt—value........ouuiiiniii it 10

(@)

Ogg Vorbis. ... 9
oo-ensure-function-wrapped function-name.. 10
oo-unwrapped function-name.................. 10

Param.set il 10
Param.wrap name wrapper-name . body......... 10
PAUSES . oottt et 5
PTOogl fOIm ..o oot 7
prosody-relative-value coef................. 14
prosody-shifted-value shift................. 14
punctuation-pronunciation.................... 4

R

read-file filename........................... 16
read-line file state......................... 16
recode string from-coding to-coding........ 17
recode-special-utf8-translations........... 17
recode-utf8->current string................. 17
remove-if test Iist 7
resampling....... ... o i 12
reset-prosody ... 15
reset-voice.......... ... i 14
restore-prosodyl 15

S

SayText ... 3, 12
second 1ist ...t 7
select-voice language dialect gender age
variant namecoieioiiina.. 13
select-voice* lang-code gender age variant
DAME . oottt ettt ettt 14
set-cap-signalization-mode mode............ 11
set-event-mapping! event-type event-value
new-event-type new-event-value............ 4
set-pitch value.................oiiiiian, 14
set-pitch-range value........................ 14
set-punctuation-mode mode................... 12
set-rate value...............iiiiiiiiiiiia, 14

27

set-volume valueoiiiiin... 14
SOUNA . ..ot 3
sound-icon-directory.......................... 3
Speech Dispatcher 1
Speech Synthesis Interface Protocol 3
speechd-speak il 17
Spell. .. 11
ssml-next-chunk............ ... 15
ssml-parse text.............. ...l 15
ssml-say texXt.......couiiiiiiiiiiiii 15
ssml-speak-chunks............................ 15
SSML . .o 3,15
string-replace string fromto................ 8
T
Bext. 3
third 1ist i 7
U
unless condition body-form 7
unwind-protect* protected-form cleanup-form

... 7
utt-relation-top-items utt relation......... 9
\Va
voice-list......oiiiiiiiii 13
voice-list-language-codes................... 13
voice-select-current-defaults.............. 14
voice-select-defaults 6
VOICES . oo vttt 5
VOrbis ..o 9
\%%
wave forms....... ... o 9
Wave-Cconcat wavesciiiiiiiiii.. 9
wave-import-utt filename 9
wave-load filename............................ 9
wave-subwave wave from-time to-time 9
wave-utt wave............. i 9
when condition body-form 7
with-open-file (variable filename &optional

how) body-formoiiiiii... 16
with-temp-file filename body................. 8
WOrd-mapping..........ooiiiiiiiiiiii . 4
WIAPPETS & ot vttt ettt 10

write-file filename string.................. 16

	1 Motivation
	2 Installation
	3 User Customization
	The Concept of Events
	Word Substitution
	Signalling Capital Characters
	Reading Punctuation Characters
	Avoiding Initial Pauses
	Tokenization
	Voice Selection
	Using with Speech Dispatcher

	4 Reference Manual
	util.scm
	Wave form handling
	oo.scm
	events.scm
	spell-mode.scm
	cap-signalization.scm
	punctuation.scm
	tokenize.scm
	multiwave.scm
	voice-select.scm
	prosody-param.scm
	ssml-mode.scm
	fileio.scm
	recode.scm
	speech-dispatcher.scm

	5 How to contact us
	A GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Index

