
AGWPE TCP/IP API Tutorial

by Ing. Pedro E. Colla (LU7DID) and George Rossopoulos (SV2AGW)

Last Revised December 12, 2000
Copyright © P.E. Colla (LU7DID) and G.Rossopoulos (SV2AGW) 2000

Abstract

The AGW Packet Engine (AGWPE) by George Rossopoulos (SV2AGW) is a powerful AX.25 Layer 2

Manager running under Windows 95/98/NT as a “state-of-the-art” 32 bits application.

At this time AGWPE supports two completely different APIs; one based in DDE (Dynamic Data

Exchange) which is the first implemented and another based on TCP/IP which has been introduced

recently.

This document would concentrate on the TCP/IP API, the intended audience for it are application

programmers looking for information on how to write (or adapt) their programs to take advantage of the

AGWPE services.

The information provided in this document is valid as per AGWPE Version 2000.20 or higher; previous

versions might not support some of the functions so checking the release information is necessary; it’s

likely that future versions would be backward compatible unless documented otherwise.

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

1 of 76 12/20/23, 20:32

Table of Contents

Abstract

Table of Contents

Overview

Communicating with AGWPE using the TCP/IP API

Enabling

AGWPE GUI

AGWPE.INI

Communications

API Application Interface Security

TCP/IP Exchange

AGWPE API Reference

Frame Structure

Frames sent by the Application to AGWPE

Application Login (‘P’ frame)

Register CallSign (‘X’ frame)

Unregister CallSign (‘x’ frame)

Ask Port Information (‘G’ frame)

Enable Reception of Monitoring Frames (‘m’ frame)

AGWPE Version Info (‘R’ frame)

Ask Port Capabilities (‘g’ frame)

Callsign Heard on a Port (‘H’ frame)

Ask Outstanding frames waiting on a Port (‘y’ Frame)

Ask Outstanding frames waiting for a connection (‘Y’ frame)

Send UNPROTO Information (‘M’ frame)

Connect, Start an AX.25 Connection (‘C’ frame)

Send Connected Data (‘D’ frame)

Disconnect, Terminate an AX.25 Connection (‘d’ frame)

Connect VIA, Start an AX.25 circuit thru digipeaters (‘v’ frame)

Send UNPROTO VIA (‘V’ frame)

Non-Standard Connections, Connection with PID (‘c’ frame)

Send Data in “raw” AX.25 format (‘K’ frame)

Activate reception of Frames in “raw” format (‘k’ Frame)

Frames Sent by AGWPE to the Application

Version Number (‘R’ frame)

Callsign Registration (‘X’ Frame)

Port Information (‘G’ Frame)

Capabilities of a Port (‘g’ Frame)

Frames Outstanding on a Port (‘y’ Frame)

Frames Outstanding on a Connection (‘Y’ Frame)

Heard Stations on a Port (‘H’ Frame)

AX.25 Connection Received (‘C’ Frame)

Connected AX.25 Data (‘D’ Frame)

Monitored Connected Information (‘I’ Frame)

Monitored Supervisory Information (‘S’ Frames)

Monitored Unproto Information (‘U’ Frames)

Monitoring Own Information (‘T’ Frames)

Monitored Information in Raw Format (‘K’ Frames)

Frame Cross-Reference

Programming Hints, Tips and Techniques

Programming Language

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

2 of 76 12/20/23, 20:32

https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723768
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723768
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723769
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723769
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723770
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723770
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723771
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723771
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723772
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723772
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723773
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723773
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723774
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723774
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723775
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723775
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723776
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723776
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723777
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723777
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723778
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723778
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723779
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723779
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723780
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723780
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723781
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723781
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723782
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723782
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723783
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723783
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723784
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723784
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723785
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723785
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723786
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723786
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723787
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723787
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723788
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723788
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723789
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723789
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723790
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723790
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723791
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723791
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723792
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723792
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723793
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723793
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723794
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723794
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723795
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723795
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723796
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723796
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723796
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723797
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723797
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723798
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723798
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723799
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723799
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723800
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723800
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723801
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723801
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723802
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723802
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723803
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723803
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723804
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723804
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723805
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723805
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723806
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723806
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723807
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723807
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723808
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723808
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723809
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723809
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723810
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723810
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723811
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723811
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723812
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723812
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723813
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723813
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723814
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723814
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723815
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723815
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723815
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723815
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723815
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723816
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723816
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723817
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723817

Talking with AGWPE

Using C++

Using Delphi4/5

Overall Communication Cycle

Frames Fiesta

Sending Frames

Receive Frames

Format VIA Areas

Parsing Port Information

Port Capabilities

Heard Information for a Port

Raw Frames

Tracking Frames

Managing Connections

One Callsign, Many Connections

Many CallSigns, Many Connections

Down the Tubes, Climb the Ladder

Credits and other stuff

Overview

As an AX.25 Layer 2 (L2 for short) Manager it could control a huge number of AX.25 devices such as

many TNC models (most of the commonly used), BayCom modems (most incarnations), quite a few

really specialized high speed modems and the SoundBlaster card as a Packet device, AGWPE also

provides an special “internal” port called loopback that could be used to interchange information among

different applications running under the same AGWPE or (very useful) for test purposes; moreover, an

almost unlimited number of them could be used at the same time each one being a “port” (well, sort of,

George claims a maximum number of 100 ports, which is “unlimited” under every stretch of the

concept).

As a manager, AGWPE is not functional per-se, meaning, the end user need to have it loaded but

doesn’t make any direct use of it other than to configure it or to get a glimpse of the current status of the

different AX.25 links and ports.

What uses the AGW Packet Engine are applications enabled to talk with it which in turn are used by

end users to sustain activity over Packet Radio.

AGWPE comes with a basic “suite” of applications comprising a Packet Terminal program

(AGWTerm), a monitor program (AGWMonitor), a mail client (AGWBBS/AGWFWD), a cluster

program (AGWCLU) and a digipeater (AGWDigipeater), all of them written by George (SV2AGW);

this suite is a complete albeit somewhat limited set for any end-user to sustain Packet operations.

A growing number of third party applications are starting to support the AGWPE also either directly

(i.e.WinPack) or thru additional libraries (Tsthwin, WinFBB,etc); a fair number of authors had

announced the future support of this platform with new versions of their programs.

The applications would see the AGWPE as a provider of services, those services are accessed thru a set

of conventions named collectively the Application Program Interface (API).

The application request services thru blocks of information called API Frames (or Frames, for short, but

don’t confuse them with AX.25 L2 Frames), those blocks are just a chunk of data with a predefined

length

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

3 of 76 12/20/23, 20:32

https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723818
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723818
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723819
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723819
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723820
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723820
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723821
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723821
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723822
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723822
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723823
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723823
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723824
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723824
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723825
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723825
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723826
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723826
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723827
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723827
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723828
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723828
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723829
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723829
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723830
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723830
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723831
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723831
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723832
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723832
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723833
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723833
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723834
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723834
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723835
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_Toc500723835

and contents.

The frames are always composed by a section named header (36 bytes long) and depending on the

action required another section named data (any length).

Frames could be generated for the application and sent to AGWPE to request an specific service (such

as sending data or to configure a particular aspect of the AGWPE functional behaviour or to require

information about the current status).

AGWPE could, in turn, send also frames to the application; either as an answer to a given service (i.e.

query of some value) or as an unsolicited block of information (i.e. a block of data just received at some

port).

Both the frames sent to AGWPE by the application and the frames sent by AGWPE to the application

has the same format.

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

4 of 76 12/20/23, 20:32

Communicating with AGWPE using the TCP/IP API

Enabling

The TCP/IP API must be enabled to be functional, the default API for AGWPE still is the old DDE

based.

There are basicall two ways to enable the TCP/IP API, thru the AGWPE GUI or modifying the

AGWPE.INI configuration file.

Both methods would be useful, the AGWPE GUI for manual configurations while the AGWPE.INI

modification could be seen more appropriate for automatic setups.

AGWPE GUI

Upon loading click on the AGWPE icon at the task bar, go to the “Setup Interfaces” entry and on the

“WinSock Interface Security” tab be sure the menu item “Enable Winsock TCP/IP Application

Interface” is checked, verify which is the TCP Port where AGWPE listen for applications (should be

8000 unless you changed it).

Once checked the change would be Accepted to be effective.

AGWPE.INI

The following entry has to be added on the configuration file AGWPE.INI (usually at the same directory

than the executable).

[TCPIPINTERCONNECT]
ENABLE=1

Without this entry AGWPE will not operate with the TCP/IP API, it is recommended that an application

program willing to use the TCP/IP API should check this configuration value to ensure it is set properly

and either set it directly or provide instructions to the end-user on the need to set it as a part of the

installation.

AGWPE doesn’t provide a way to activate the TCP/IP API thru any of the GUI dialogs, so the entry on

the AGWPE.INI must be configured and it is the only way to activate the TCP/IP API.

AGWPE reads this information only at startup, so for any change to be made effective the program has

to be stopped and started.

Communications

When starting with this configuration AGWPE starts to serve the TCP/IP port 8000 for incoming

requests from applications, see the previous section (AGWPE GUI) on how to change it..

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

5 of 76 12/20/23, 20:32

Every application would start as many TCP/IP connections (sockets) with the AGWPE as required

(usually one will be enough), multiple applications could have open connections with AGWPE at the

same time; the limit on the number of sockets or connections AGWPE could sustain is defined by the

TCP/IP stack of the machine where AGWPE is running (every socket “tax” the system resources, mostly

in terms of memory and CPU cycles, till eventually no additional sockets could be opened).

On machines with a modern configuration this limit is not easily achievable under practical uses;

AGWPE itself is extremely efficient in terms of the memory used and CPU cycles taken by itself([1]).

Each application is a typical TCP/IP client, as usually referred to in the bibliography, while AGWPE

itself is a TCP/IP server.

In order to open a socket the application should start a TCP/IP connection to the IP address of the

machine where AGWPE is running and the TCP Port 8000.

One of the very powerful aspects of the TCP/IP API is the fact that no restriction bounds the application

and AGWPE to be run on the same machine, as long as a TCP/IP connection could be established the

AGWPE and the Application program could be run on the same machine, on close machines operating

in some LAN or half a world appart.

The traffic (amount of data transferred between AGWPE and the Application) is quite substantial

indeed, in order to achieve reasonable performance the bandwidth between AGWPE and the Application

(each application) should be in the order of 3 to 4 times the combined bandwidth of all the AX.25 ports

being serviced, this could be served in excess either running AGWPE and the application on the same

machine or being linked by some Ethernet or TokenRing LAN (typical speeds between 10 and 100

Mbps), dial-up connections might be marginal depending on the total load planned to be serviced([2]).

An interesting (theoretical) possiblity is to run AGWPE and an application program being appart and

linked thru Packet Radio (TCP/IP over AX.25), albeit most current networks won’t have enough speed

to provide even a minimum functionality in real world terms.

In order for the TCP/IP communication to be established the IP Address of the machine where AGWPE

is running is assumed to be known (this is a pre-requisite), the TCP port is as stated usually 8000.

The IP address of the machine could be easily obtained with the Windows utility named winipcfg, in

case the machine has many adapters (each one eventually having one different IP address) you could use

the one associated with the adapter that could “see” the machine running AGWPE.

In the case the application and AGWPE runs on the same machine the definition of the IP address

becomes trivial since the IP loopback address (127.0.0.1) should be always used; since most of the time

AGWPE and the application will be run on the same machine the loopback IP address should be the one

used by the application by default[3]

API Application Interface Security

Starting on version 2000.78 AGWPE brings security features that must be taken into account, the

behaviour of the security model is controlled by the settings at the “WinSock Interface Security” tab on

the “Interface Setup” menu entry.

• AGWPE allows applications to be:

◦ Local only (entry “Accept only from MyComputer”.

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

6 of 76 12/20/23, 20:32

https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftn1
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftn1
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftn1
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftn1
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftn2
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftn2
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftn2
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftn2
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftn3
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftn3
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftn3
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftn3

◦ Intranet only (entry “Accept Only From MyLAN (standard)”.

◦ Internet (entry “Accept from Anywhere”).

• Applications could override the default security setting as stated above by means of sending an

special “login” frame.

Be aware that if the application is being ran from a machine that doesn’t comply with the security setting

it has to provide a frame of type “P” to be able to interact with

AGWPE, more on this later.

This security model allows flexibility to make visible a node to a big (uncontrolled) environment such as

the Internet and still enable the system operator to control who

is using his resources.

TCP/IP Exchange

The basics on how to program using TCP/IP are far beyond the scope of this document to explain,

however, TCP/IP is a technology so pervasive and widely used that no modern language intended for the

Windows environment lacks support for it.

Usually this support is in the form of a set of calls (the TCP/IP API or the programming conventions to

use TCP/IP, do not get confused with the AGWPE TCP/IP API which is the way to communicate with

AGWPE using TCP/IP).

The implementation varies from programming language to programming language, and even within

them there are often many alternative implementations based on different vendors.

TCP/IP programming could be a mind boggling exercise at its limits, fortunately only a subset of all the

functions are needed to establish and maintain a successful connection with AGWPE under most

circumstances.

Communications with AGWPE will use TCP sockets only, so on most implementations of TCP/IP you

would require to use just 3 API calls:

• A call to OPEN a socket.

• A call to SEND information thru an opened socket (usually a binary block of data).

• A call to CLOSE the socket upon termination.

Your program would also need to handle a minimum of 3 events related to an open socket:

• An event confirming the socket has been opened.

• An event informing when some error occurs.

• An event informing data had arrived from AGWPE and it’s available for processing (usually a

block of data).

Depending on the language and the library the above basic elements might vary, through this document

all techniques would be explained conceptually based on this set.

The sequence of a dialog between an application and AGWPE always steps thru the following major

activities:

• A TCP/IP socket is established with AGWPE, errors in this process must be handled.

• Some initial interchange of information with AGWPE in order to get or set configurations.

• The AX.25 activity itself (send and receive data+status).

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

7 of 76 12/20/23, 20:32

• Some final configuration clean-up between the application and AGWPE.

• The TCP/IP socket is closed.

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

8 of 76 12/20/23, 20:32

AGWPE API Reference

Frame Structure

Information between AGWPE and the application flows in both directions using an overall format

composed by a header (fixed) and a variable data area depending on the particular frame being sent

(many frames are just formed by a header).

Field Length Meaning

AGWPE Port 1 Bytes [0..n] the least significant value

comes in the first byte while the

most significant in the second.

I.E. Port 2 would be expressed as

0x01 ([4])

Reserved 3 Bytes Usually 0x00 0x00 0x00

DataKind 1 Byte Is the frame code, reflects the

purpose of the frame. The

meaning of the DataKind DO

VARY depending on whether the

frame flows from the application

to AGWPE or viceversa.

Reserved 1 Byte Usually 0x00

PID 1 Byte Frame PID, it’s usage is valid

only under certain frames only.

Should be 0x00 when not used.

Reserved 1 Byte Usually 0x00

CallFrom 10 Bytes CallSign FROM of the packet, in

ASCII, using the format

{CALLSIGN}-{SSID}

(i.e. LU7DID-8)

it is “null terminated” (it ends

with 0x00). ([5])

The field ALWAYS is 10 bytes

long.

It’s filled on packets where it has

some meaning.

CallTo 10 Bytes CallSign TO of the packet, same

as above.

DataLen 4 Bytes Data Length as a 32 bits unsigned

integer.

If zero means no data follows the

header.

User (Reserved) 4 Bytes 32 bits unsigned integer, not used.

Reserved for future use.

All reserved fields must not be used by application programs in any form, they should be initialized to

binary zeros (0x00) on frames sent by the application to AGWPE, undefined values could be present on

frames sent by AGWPE to the application on those frames.

AGWPE is fairly tolerant on unused fields (either reserved or not used on a particular frame format) to

held almost anything, so the need for proper initialize them reflected on this documentation aims

towards proper programming practices rather than actual needs from AGWPE.

Frames sent from the Application to AGWPE where the CallFrom/CallTo values are relevant must

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

9 of 76 12/20/23, 20:32

https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftn4
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftn4
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftn4
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftn4
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftn5
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftn5
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftn5
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftn5

contain our callsign in the CallFrom and the other end callsign in the CallTo fields. The other way

around, frames from AGWPE to the Application would contain the other end callsign+SSID in the

CallFrom and our callsign+SSID in the CallTo fields.

When the frame has data associated with it (DataLen <> 0) the bytes up to the number expressed by

DataLen follows inmediately after the last byte of the header.

In order to allow for a fully transparent transport of data no delimiters of any kind are used on the data

area, so binary information of any kind could be effectively transported.

A typical example of a frame (header+data) sent by AGWPE looks like this:

|01 00 00 00 4D 00 CF 00 4C 55 37 44 49 44 2D 34 |....M...LU7DID-4
|00 00 4E 4F 44 45 53 00 00 00 00 00 07 00 00 00 |..NODES.........
|00 00 00 00 FF 41 42 52 4F 57 4E -- -- -- -- -- |.....ABROWN

An example of a frame with just a header sent by AGWPE looks like this:

|00 00 00 00 58 00 00 00 4C 55 37 44 49 44 2D 34 |....X...LU7DID-4
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 -- -- -- -- -- -- -- -- -- -- -- -- |....

It’s worth to notice that in the second example not all fields (actually the ones not relevant to the

function requested as we would see) have not been completed.

Frames sent by the Application to AGWPE

Application might (or must, sometimes) send data to AGWPE in order to retrieve configuration

information or to sustain communication over any of the ports.

Colloquially, the frames are identified by it’s DataKind (so a frame with a DataKind=’X’ is referred in

this documentation as an ‘X’ frame).

The same DataKind could be used on a frame sent by the application to AGWPE or from AGWPE to the

application (however, the meaning of a DataKind is unique in any given direction), usually the frames

with the same DataKind on both directions are Query-Answer pairs (so, i.e., a ‘G’ frame sent by the

application is replied by AGWPE with a ‘G’ frame filled with the information required).

Care has to be taken by the application program to handle sent and received frames separately.

Follows all the frame formats supported for the application to send to AGWPE.

Application Login (‘P’ frame)

An application needs to login when the “WinSock Interface Security” setting rules doesn’t allow the

machine where the application is being ran to access the AGWPE directly; it should not bother

applications running on the same machine where AGWPE is executing. Still applications should allow

the user to define this security setting and be flexible to be run on machines other than the one AGWPE

is running (and thus, potentially not enabled directly by the security settings to access AGWPE).

This frame is mandatory when the application is being run from a machine that doesn’t comply with the

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

10 of 76 12/20/23, 20:32

security rules, without it AGWPE will not accept nor send frames

to the application.

The login is made with a frame with an empty header and the login data into the Information part of the

frame with the following format.

Field Length Meaning

AGWPE Port 1 Bytes 0x00

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘P’ (ASCII 0x50)

Reserved 1 Byte 0x00

PID 1 Byte 0x00

Reserved 1 Byte 0x00

CallFrom 10 Bytes 10 0x00

CallTo 10 Bytes 10 0x00

DataLen 4 Bytes Length of User+Password

including 0x00’s

User & Password N Bytes UserId ended with 0x00 filled till

255 bytes

Password ended with 0x00 filled

with 255 bytes

AGWPE do not inform the application about the success.

Please note an application must send one of the UserId/Password combinations as stated in the

“WinSock Interface Security” tab “User Setup” section in order to be validated and allowed by AGWPE

to interact with it thru the WinSocks API.

Follows a sample content of the information area of the frame using a dump format of this frame (16

hexadecimal formatted bytes at the left and the ASCII, interpretation when feasible at the right), this

sample could be used for study and comparation purposes.

|4C 55 37 44 49 44 00 00 00 00 00 00 00 00 00 00 |LU7DID..........
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 4C |...............L
|49 5A 41 52 44 00 00 00 00 00 00 00 00 00 00 00 |IZARD...........
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

11 of 76 12/20/23, 20:32

|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
|00 00 00 00 00 00 00 00 00 00 00 00 00 00 -- -- |..............

Register CallSign (‘X’ frame)

An application needs to register at least one callsign with AGWPE as a pre-requisite to be able to send

data thru any AX.25 port or to sustain any connection and before any attempt on doing so.

To receive (monitor) information heard at the different ports the “m” frame should be used instead.

There is no limits on the number of callsigns that could be registered by a single application, each

registration would require a separate frame.

When an application registers a callsign AGWPE “listen” on the radio ports for any packet frame

directed to that callsign and when detected it would be sent to the application using the suitable frame

format (depending on the type).

The registration is made with a frame with just a header (no data) with the following format.

Field Length Meaning

AGWPE Port 1 Bytes 0x00

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘X’ (ASCII 0x58)

Reserved 1 Byte 0x00

PID 1 Byte 0x00

Reserved 1 Byte 0x00

CallFrom 10 Bytes CallSign-SSID to register

CallTo 10 Bytes 10 0x00

DataLen 4 Bytes 0

User (Reserved) 4 Bytes 0

A given callsign and SSID combination is allowed to be registered just once by an application (actually

among all the applications connected to the same AGWPE at any given moment).

AGWPE informs the application about the success (callsign+SSID registered) or failure (callsign+SSID

already in use) by means of an “X” frame sent to the application in response of this one.

Please note an application could register almost “anything” as a callsign+SSID (not necessarily a true

callsign), so if for some reason is relevant to the application to receive frames directed to (i.e.) the

“NODES” destination that could be accomplished registering the “NODES” callsign, in a way that any

frames (likely UI frames) directed to the “NODES” destination (NODES-0 actually) would be directed

to the application who registered it. As in with the case of true callsigns a given “destination”+SSID is

allowed to be registered just once.

A registration could be performed at any time by the application.

Follows a sample frame using a dump format of this frame (16 hexadecimal formatted bytes at the left

and the ASCII, interpretation when feasible at the right), this sample could be used for study and

comparation purposes.

|00 00 00 00 58 00 00 00 4C 55 37 44 49 44 2D 34 |....X...LU7DID-4

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

12 of 76 12/20/23, 20:32

|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................

|00 00 00 00 -- -- -- -- -- -- -- -- -- -- -- -- |....

Unregister CallSign (‘x’ frame)

This is the opposite function than to register a callsign, it means the callsign and SSID combination is

not longer used by the application and it’s free for further use, from the moment of the application

become unregistered and till it’s registred again all activity heard by AGWPE on the AX.25 ports

directed to that callsign is ignored.

Also, all information sent by the application to AGWPE involving the unregistered callsign is ignored.

The overall format is very similar to the registration frame, just the DataKind is changed, as follows:

Field Length Meaning

AGWPE Port 1 Bytes 0x00

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘x’ (ASCII 0x78)

Reserved 1 Byte 0x00

PID 1 Byte 0x00

Reserved 1 Byte 0x00

CallFrom 10 Bytes CallSign-SSID to unregister

CallTo 10 Bytes 10 0x00

DataLen 4 Bytes 0

User (Reserved) 4 Bytes 0

As a difference with the registration frame the application should not expect any answer from AGWPE

as a confirmation of the successful unregistration.

Follows a sample frame using a dump format of this frame (16 hexadecimal formatted bytes at the left

and the ASCII, interpretation when feasible at the right), this sample could be used for study and

comparation purposes.

|00 00 00 00 78 00 00 00 4C 55 37 44 49 44 2D 34 |....x...LU7DID-4

|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................

|00 00 00 00 -- -- -- -- -- -- -- -- -- -- -- -- |....

Ask Port Information (‘G’ frame)

Using this frame the application could query AGWPE to provide information about the currently defined

ports.

This information is usually handy at the start of the application program in order to know the number of

ports available and eventually use that information for functional or presentation purposes, the port

information could not be changed dynamically on AGWPE (it requires AGWPE to be stopped and re-

started) so this information should also be queried every time the TCP/IP connection is re-established.

The frame format comprises a header only with the following information.

Field Length Meaning

AGWPE Port 1 Bytes 0x00

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘G’ (ASCII 0x47)

Reserved 1 Byte 0x00

PID 1 Byte 0x00

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

13 of 76 12/20/23, 20:32

Reserved 1 Byte 0x00

CallFrom 10 Bytes 10 0x00

CallTo 10 Bytes 10 0x00

DataLen 4 Bytes 0

User (Reserved) 4 Bytes 0

AGWPE answer this request with a “G” frame.

Follows a sample frame using a dump format of this frame (16 hexadecimal formatted bytes at the left

and the ASCII, interpretation when feasible at the right), this sample could be used for study and

comparation purposes.

|00 00 00 00 47 00 00 00 00 00 00 00 00 00 00 00 |....G...........

|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................

|00 00 00 00 -- -- -- -- -- -- -- -- -- -- -- -- |....

Enable Reception of Monitoring Frames (‘m’ frame)

In order for monitoring frames to be sent to the application this condition has to be signaled to AGWPE

using this frame.

From the moment this frame is sent activity at all ports would be made available to the application

(Frames S,I and U).

This function could be used even if the application didn’t registered any callsign.

Field Length Meaning

AGWPE Port 1 Bytes 0x00

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘m’ (ASCII 0x6D)

Reserved 1 Byte 0x00

PID 1 Byte 0x00

Reserved 1 Byte 0x00

CallFrom 10 Bytes 10 0x00

CallTo 10 Bytes 10 0x00

DataLen 4 Bytes 0

User (Reserved) 4 Bytes 0

AGWPE didn’t confirm specifically this frame, however, the flow of monitored information should start

inmediately after it has been sent by the application.

This frame acts like a switch, the first time issued it enables the reception of monitoring frames while the

second disables it and so on; in general on odd times it would enable and on even times it would disable.

Follows a sample frame using a dump format of this frame (16 hexadecimal formatted bytes at the left

and the ASCII, interpretation when feasible at the right), this sample could be used for study and

comparation purposes.

|00 00 00 00 6D 00 00 00 00 00 00 00 00 00 00 00 |....m...........

|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................

|00 00 00 00 -- -- -- -- -- -- -- -- -- -- -- -- |....

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

14 of 76 12/20/23, 20:32

AGWPE Version Info (‘R’ frame)

It’s sometimes important (at least it’s is a good programming recommended practice) to care about the

level of the AGWPE which the application is connecting to.

Several reasons support that practice, but the most important is to be sure the AGWPE will support all

the frames and functions the application program would require to work properly; as a fast evolving

platform AGWPE is being continuously upgraded with new functions and fixes for old ones.

The application programmer should not be surprised to find almost all version historically released of

AGWPE thru the time, not all of them supporting the full set of frames documented here (which are

valid as per version 2000.20 or higher).

The AGWPE version is queried with a frame with the following format:

Field Length Meaning

AGWPE Port 1 Bytes 0x00

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘R’ (ASCII 0x52)

Reserved 1 Byte 0x00

PID 1 Byte 0x00

Reserved 1 Byte 0x00

CallFrom 10 Bytes 10 0x00

CallTo 10 Bytes 10 0x00

DataLen 4 Bytes 0

User (Reserved) 4 Bytes 0

In any case, this frame should be sent at least once per execution by the application program (even if the

AGWPE connection could be stopped and restarted it’s not unreasonable to assume the version didn’t

changed, doesn’t hurt to query and confirm the version on each connection with AGWPE though).

This frame is answerd by AGWPE with an ‘R’ frame.

Follows a sample frame using a dump format of this frame (16 hexadecimal formatted bytes at the left

and the ASCII, interpretation when feasible at the right), this sample could be used for study and

comparation purposes.

|00 00 00 00 52 00 00 00 00 00 00 00 00 00 00 00 |....R...........

|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................

|00 00 00 00 -- -- -- -- -- -- -- -- -- -- -- -- |....

Ask Port Capabilities (‘g’ frame)

An useful complement of the “G” frame (Ask Port Information) is to query AGWPE about the particular

configuration for every specific port.

Albeit AGWPE doesn’t allow an application to change its configuration thru the API it’s usually

necessary or useful to get that information anyway for (mostly) presentation purposes.

This frame has the following format

Field Length Meaning

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

15 of 76 12/20/23, 20:32

AGWPE Port 1 Bytes Port to query

0=Port1,1=Port2,…

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘g’ (ASCII 0x6D)

Reserved 1 Byte 0x00

PID 1 Byte 0x00

Reserved 1 Byte 0x00

CallFrom 10 Bytes 10 0x00

CallTo 10 Bytes 10 0x00

DataLen 4 Bytes 0

User (Reserved) 4 Bytes 0

AGWPE answers this request with a “g” frame.

Some values are static and could not be changed without re-starting AGWPE, but others reflects

dynamically the current status of a given port in terms of traffic.

This function should be called at least once every time a connection with AGWPE is established, there is

no limit on how many times this information could be queried, however, a practical limit from the

performance (and usefulness) standpoint should limit this query to be performed once every minute or

so.

Follows a sample frame using a dump format of this frame (16 hexadecimal formatted bytes at the left

and the ASCII, interpretation when feasible at the right), this sample could be used for study and

comparation purposes.

|00 00 00 00 67 00 00 00 00 00 00 00 00 00 00 00 |....g...........

|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................

|00 00 00 00 -- -- -- -- -- -- -- -- -- -- -- -- |....

Callsign Heard on a Port (‘H’ frame)

A very useful service required (or nice to have) on most applications is a list of the stations “heard” on a

given port; this could be achieved by the application just collecting monitoring information.

However, this is not required since AGWPE helds such a list and makes it available to the application

upon request (at any time).

In order to request the updated list of stations heard on a given port the following frame has to be sent.

Field Length Meaning

AGWPE Port 1 Bytes Port to query

0=Port1,1=Port2,…

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘H’ (ASCII 0x48)

Reserved 1 Byte 0x00

PID 1 Byte 0x00

Reserved 1 Byte 0x00

CallFrom 10 Bytes 10 0x00

CallTo 10 Bytes 10 0x00

DataLen 4 Bytes 0

User (Reserved) 4 Bytes 0

This function makes AGWPE to answer the Heard information thru an “H” frame.

This frame could be sent as many times as required during the lifespan of a connection, every time the

information provided will be updated to reflect the traffic actually heard.

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

16 of 76 12/20/23, 20:32

Follows a sample frame using a dump format of this frame (16 hexadecimal formatted bytes at the left

and the ASCII, interpretation when feasible at the right), this sample could be used for study and

comparation purposes.

|01 00 00 00 48 00 00 00 00 00 00 00 00 00 00 00 |....H...........

|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................

|00 00 00 00 -- -- -- -- -- -- -- -- -- -- -- -- |....

Ask Outstanding frames waiting on a Port (‘y’ Frame)

This frame could be used by the application at any time to query AGWPE about the number of frames

(from all sources, not only this application) that are queued and waiting to be transmitted by AGWPE

thru a given port.

This would be useful to regulate the rate used to send information to AGWPE and to keep it realistic

with the actual bandwidth of the destination port.

The information could be queried using the following frame:

Field Length Meaning

AGWPE Port 1 Bytes Port to query

0=Port1,1=Port2,…

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘y’ (ASCII 0x79)

Reserved 1 Byte 0x00

PID 1 Byte 0x00

Reserved 1 Byte 0x00

CallFrom 10 Bytes 10 0x00

CallTo 10 Bytes 10 0x00

DataLen 4 Bytes 0

User (Reserved) 4 Bytes 0

This frame is answered by AGWPE with an ‘y’ frame.

Follows a sample frame using a dump format of this frame (16 hexadecimal formatted bytes at the left

and the ASCII, interpretation when feasible at the right), this sample could be used for study and

comparation purposes.

|00 00 00 00 79 00 00 00 00 00 00 00 00 00 00 00 |....y...........

|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................

|00 00 00 00 -- -- -- -- -- -- -- -- -- -- -- -- |....

Ask Outstanding frames waiting for a connection (‘Y’ frame)

This frame could be used with similar purposes than the ‘y’ frame but to query AGWPE about the

outstanding frames waiting sourced on a given (and specific) connection as opposed to the overall

activity of a port without any clue on how it had been sourced.

The information could be queried using the following frame:

Field Length Meaning

AGWPE Port 1 Bytes Port to query

0=Port1,1=Port2,…

Reserved 3 Bytes 0x00 0x00 0x00

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

17 of 76 12/20/23, 20:32

DataKind 1 Byte ‘Y’ (ASCII 0x59)

Reserved 1 Byte 0x00

PID 1 Byte 0x00

Reserved 1 Byte 0x00

CallFrom 10 Bytes Our CallSign-SSID

i.e. LU7DID-11 ended with

null (0x00)

CallTo 10 Bytes Other CallSign-SSID

i.e. SV2AGW-14 ended with

null (0x00)

DataLen 4 Bytes 0

User (Reserved) 4 Bytes 0

AGWPE would answer this frame with a ‘Y’ frame himself if the connection referred by the

CallFrom/CallTo fields do exists currently.

Careful must be exercised to fill correctly both the CallFrom and CallTo fields to match the ones of an

existing connection, otherwise AGWPE won’t return any information at all from this query.

The order of the CallFrom and CallTo is not trivial, it should reflect the order used to start the

connection,

so

• If we started the connection CallFrom=US and CallTo=THEM

• If the other end started the connection CallFrom=THEM and CallTo=US

Please refer to the ‘C’ frame sent by AGWPE upon connection to understand how to identify who

initiated a connection.

Follows a sample frame using a dump format of this frame (16 hexadecimal formatted bytes at the left

and the ASCII, interpretation when feasible at the right), this sample could be used for study and

comparation purposes.

|01 00 00 00 59 00 00 00 4C 55 37 44 49 44 2D 34 |....Y...LU7DID-4

|00 00 4C 55 37 44 49 44 00 00 00 00 00 00 00 00 |..LU7DID........

|00 00 00 00 -- -- -- -- -- -- -- -- -- -- -- -- |....

Send UNPROTO Information (‘M’ frame)

This frame could be used by the application when an AX.25 unproto (UI) frame must be sent by the

application.

For an application to send unproto information no registration is needed, however unproto information

heard on the ports directed to it won’t be made available by AGWPE and information exchange won’t

be possible (unless the application extract frames directed to it thru the inspection of monitoring frames,

which is not utterly practical but still possible).

Typical uses for an unproto frame are beacon or any other broadcast message, it’s also widely used by

NETROM L3 broadcast, TCP/IP over AX.25 and the FBB mail client protocol among others.

In order to send an unproto frame the header to be used is

Field Length Meaning

AGWPE Port 1 Bytes Port to send the unproto frame

thru {0=Port1,1=Port2,…}

Reserved 3 Bytes 0x00 0x00 0x00

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

18 of 76 12/20/23, 20:32

DataKind 1 Byte ‘M’ (ASCII 0x4D)

Reserved 1 Byte 0x00

PID 1 Byte AX.25 PID

0x00 or 0xF0 for AX.25

0xCF NETROM

and others

Reserved 1 Byte 0x00

CallFrom 10 Bytes Our CallSign-SSID

i.e. LU7DID-11 ended with

null (0x00) used

CallTo 10 Bytes Destination of the unproto

frame. Not necessarily a

callsign+SSID (could be i.e. CQ,

ID, another callsign+SSID), etc…

DataLen 4 Bytes Number of Bytes to be sent

User (Reserved) 4 Bytes 0

Following the header the (exact) amount of bytes indicated in DataLen should follow.

AGWPE would indirectly inform the success of the unproto send thru both an ‘I’ frame, a ‘U’ frame and

a ‘T’ frame (if monitoring is enabled thru the ‘m’ frame).

Even if AGWPE handles AX.25 frames larger than 255 bytes not so many other programs could over

the air, so it’s a reasonably programming practice to ensure than the length of the data to be transferred is

equal to or less than 255 bytes.

Follows a sample frame using a dump format of this frame (16 hexadecimal formatted bytes at the left

and the ASCII, interpretation when feasible at the right), this sample could be used for study and

comparation purposes.

|00 00 00 00 4D 00 F0 00 4C 55 37 44 49 44 2D 34 |....M...LU7DID-4

|00 00 4E 45 54 4D 45 00 00 00 00 00 39 00 00 00 |..NETME.....9...

|00 00 00 00 0D 0A 42 65 61 63 6F 6E 20 64 65 20 |......Beacon de

|4E 6F 64 6F 20 4C 55 37 44 49 44 2D 34 20 41 64 |Nodo LU7DID-4 Ad

|72 6F 67 75 65 20 42 41 20 41 72 67 65 6E 74 69 |rogue BA Argenti

|6E 61 20 5B 47 46 30 35 54 45 5D 0D 0A -- -- -- |na [GF05TE]..

Connect, Start an AX.25 Connection (‘C’ frame)

This frame is sent to AGWPE when an AX.25 connection with other station is required.

The station originating the connection (CallFrom) must had been previously registered with AGWPE

(‘X’ frame) for the connection to be successfully established.

The connection started with this frame would always be a normal AX.25 connection (information

frames with PID=0xF0).

The application is responsible to identify the port to be used for this connection and to properly inform it

on the frame.

The format of the frame follows:

Field Length Meaning

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

19 of 76 12/20/23, 20:32

AGWPE Port 1 Bytes Port to send the connection

request frame thru

{0=Port1,1=Port2,…}

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘C’ (ASCII 0x43)

Reserved 1 Byte 0x00

PID 1 Byte AX.25 PID (0xF0 or 0x00)

Reserved 1 Byte 0x00

CallFrom 10 Bytes Our CallSign-SSID

i.e. LU7DID-11 ended with

null (0x00) used. must had been

previously registered

CallTo 10 Bytes Destination callsign+SSID of the

connection.

DataLen 4 Bytes 0

User (Reserved) 4 Bytes 0

AGWPE would start inmediately to connect the destination callsign-SSID (it could be monitored, if

monitoring has been enabled) thru the ‘S’ frames.

Upon connection or failure the application would receive a ‘C’ frame or a “Retryout message”.

An application could sustain one connection per distinctive callsigns+SSID for both origin and

destination pairs (only one connection by a given callsign+SSID on origin and destination is allowed by

the AX.25 protocol).

No practical limit do exists on the number of connections an application could sustain with different

destinations, even from the same originating callsign+SSID. This concept, of course, is extended when

many callsigns+SSID are registered by the same application.

It is an application duty, as we’ll see on the relevant frames sent by AGWPE, to discriminate among data

coming from diferent connections.

Follows a sample frame using a dump format of this frame (16 hexadecimal formatted bytes at the left

and the ASCII, interpretation when feasible at the right), this sample could be used for study and

comparation purposes.

|01 00 00 00 43 00 00 00 4C 55 37 44 49 44 2D 34 |....C...LU7DID-4

|00 00 4C 55 37 44 49 44 00 00 00 00 00 00 00 00 |..LU7DID........

|00 00 00 00 -- -- -- -- -- -- -- -- -- -- -- -- |....

Send Connected Data (‘D’ frame)

Once a connection had been successfully established data could be exchanged, the application could

then send data to the other end by means of data frames.

The format of the frame would be

Field Length Meaning

AGWPE Port 1 Bytes Port to send the data frame thru

{0=Port1,1=Port2,…}

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘D’ (ASCII 0x44)

Reserved 1 Byte 0x00

PID 1 Byte AX.25 PID (0xF0 or 0x00)

Reserved 1 Byte 0x00

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

20 of 76 12/20/23, 20:32

CallFrom 10 Bytes Our CallSign-SSID

i.e. LU7DID-11 ended with

null (0x00) used. must had been

previously registered

CallTo 10 Bytes Destination callsign+SSID of the

connection.

DataLen 4 Bytes Number of Data Bytes to be

transferred.

User (Reserved) 4 Bytes 0

Following the header the (exact) amount of bytes indicated in DataLen should follow.

AGWPE would indirectly inform the success of the unproto send thru both an ‘I’ frame, a ‘U’ frame and

a ‘T’ frame (if monitoring is enabled thru the ‘m’ frame).

Data exchanged would be under a standard AX.25 Information PID (0xF0) unless the connection had

been specifically started signalling AGWPE about a non-standard PID (connection started with the ‘c’

frame instead of the ‘C’ frame), on such situations the application must place the relevant PID on the

respective field of the header. In all other situations the PID field is ignored by AGWPE and 0xF0 is

used instead.

If a ‘D’ frame is sent by the application without an established connection the frame is ignored by

AGWPE.

It is the application responsibility to keep using the proper AGWPort and CallFrom/CallTo values on all

the frames of a given connection than the used to establish it.

Even if AGWPE handles AX.25 frames larger than 255 bytes not so many other programs could over

the air, so it’s a reasonably programming practice to ensure than the length of the data to be transferred is

equal to or less than 255 bytes.

Follows a sample frame using a dump format of this frame (16 hexadecimal formatted bytes at the left

and the ASCII, interpretation when feasible at the right), this sample could be used for study and

comparation purposes.

|01 00 00 00 44 00 F0 00 4C 55 37 44 49 44 00 00 |....D...LU7DID..

|F0 15 4C 55 37 44 49 44 2D 34 00 00 02 00 00 00 |..LU7DID-4......

|A8 6D 45 00 3F 0D -- -- -- -- -- -- -- -- -- -- |.mE.?.

Disconnect, Terminate an AX.25 Connection (‘d’ frame)

When an AX.25 connection (started with a ‘C’ frame) needs to be terminated a disconnection frame

must be sent by the application.

To send data between a connection and a disconnection is, of course, optional; however, the main

purpose of a connection would be most of the time to exchange data with another station.

The format of the frame would be:

Field Length Meaning

AGWPE Port 1 Bytes Port to send the data frame thru

{0=Port1,1=Port2,…}

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘d’ (ASCII 0x64)

Reserved 1 Byte 0x00

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

21 of 76 12/20/23, 20:32

PID 1 Byte AX.25 PID (0xF0 or 0x00)

Reserved 1 Byte 0x00

CallFrom 10 Bytes Our CallSign-SSID

i.e. LU7DID-11 ended with

null (0x00) used. must had been

previously registered

CallTo 10 Bytes Destination callsign+SSID of the

connection.

DataLen 4 Bytes 0

User (Reserved) 4 Bytes 0

No data is associated with this frame.

AGWPE will inform the completion of this request thru a ‘d’ frame[6]

If a ‘d’ frame is sent by the application without an established connection the frame is ignored by

AGWPE.

It is the application responsibility to keep using the proper AGWPort and CallFrom/CallTo values on all

the frames of a given connection than the used to establish it.

Follows a sample frame using a dump format of this frame (16 hexadecimal formatted bytes at the left

and the ASCII, interpretation when feasible at the right), this sample could be used for study and

comparation purposes.

|01 00 00 00 64 00 00 00 4C 55 37 44 49 44 2D 34 |....d...LU7DID-4

|00 00 4C 55 37 44 49 44 00 00 00 00 00 00 00 00 |..LU7DID........

|00 00 00 00 -- -- -- -- -- -- -- -- -- -- -- -- |....

Connect VIA, Start an AX.25 circuit thru digipeaters (‘v’ frame)

This frame is used with similar purposes than the ‘C’ frame, but as it creates a “direct” connection this

frame must be used when intermediate AX.25 digipeaters must be used to establish a connection.

It’s the application responsibility to determine, based on it’s functionality and user interface, whether a

given connection should be started direct (‘C’ frame) or thru digipeaters (‘v’ frame).

Once the connection is established data is transferred between both ends with the same frame (‘D’

frame) and disconnection is started also with the same frame (‘d’ frame) on both.

The format of this frame would be

Field Length Meaning

AGWPE Port 1 Bytes Port to send the data frame thru

{0=Port1,1=Port2,…}

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘v’ (ASCII 0x76)

Reserved 1 Byte 0x00

PID 1 Byte AX.25 PID (0xF0 or 0x00)

Reserved 1 Byte 0x00

CallFrom 10 Bytes Our CallSign-SSID

i.e. LU7DID-11 ended with

null (0x00) used. must had been

previously registered

CallTo 10 Bytes Destination callsign+SSID of the

connection.

DataLen 4 Bytes Length of the VIA information

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

22 of 76 12/20/23, 20:32

https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftn6
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftn6
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftn6
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftn6

User (Reserved) 4 Bytes 0

The VIA (number and sequence of digipeaters to be used) is informed in the data part of the frame

inmediately following the header, the length of this area would vary depending on the number of

digipeaters to be used, the exact length must be informed in the DataLen field.

The data area must contain the VIA information in the following format

Offset Length Meaning

+00 1 Bytes Total number of digipeaters to be

used (max 7)

+01 10 Bytes CallSign+SSID of the first

digipeater ended with null (0x00)

+11 10 Byte CallSign+SSID of the 2nd

digipeater ended with null (0x00)

…… …… …..

+10XN+1 10 Byte CallSign+SSID of the Nnd

digipeater ended with null (0x00)

Of course, only the number of needed digipeaters has to be informed (but at least ONE must be

informed, otherwise a direct connection should be used instead).

The successful completion of the connection is informed by AGWPE thru the ‘C’ frame.

Send UNPROTO VIA (‘V’ frame)

When the application needs to send unproto information (as in the ‘M’ frame) but using a chain of

repeaters to do so this frame format should be used instead.

The frame format is as follows:

Field Length Meaning

AGWPE Port 1 Bytes Port to send the unproto frame

thru {0=Port1,1=Port2,…}

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘V’ (ASCII 0x76)

Reserved 1 Byte 0x00

PID 1 Byte AX.25 PID (0xF0 or 0x00)

Reserved 1 Byte 0x00

CallFrom 10 Bytes Our CallSign-SSID

i.e. LU7DID-11 ended with

null (0x00) used. must had been

previously registered

CallTo 10 Bytes Destination callsign+SSID or ID

of the unproto frame (i.e. CQ, ID,

MAIL, etc)

DataLen 4 Bytes Length of the VIA information

and the data to be sent

User (Reserved) 4 Bytes 0

Right after the header the chain of digipeaters to be used is sent as the first part of the data area using the

format already discussed for the Connect VIA (‘v’ frame)

Offset Length Meaning

+00 1 Bytes Total number of digipeaters to be

used (max 7)

+01 10 Bytes CallSign+SSID of the first

digipeater ended with null (0x00)

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

23 of 76 12/20/23, 20:32

+11 10 Byte CallSign+SSID of the 2nd

digipeater ended with null (0x00)

…… …… …..

+10XN+1 10 Byte CallSign+SSID of the Nnd

digipeater ended with null (0x00)

As before, only the number of digipeaters to be used needs to be included (with at least one being

informed).

After the VIA information the actual data to be sent is included, please note the DataLen field on the

header should reflect the exact size of both the VIA information and the data information to be sent.

Even if AGWPE handles AX.25 frames larger than 255 bytes not so many other programs could over

the air, so it’s a reasonably programming practice to ensure than the length of the data to be transferred is

equal to or less than 255 bytes.

However, nothing prevents the SUM of the VIA information and the data information to be sent to be

larger than 255 bytes (the VIA information is internally decoded and used by AGWPE to build the

AX.25 header but only the data information is included on the AX.25 information part).

Non-Standard Connections, Connection with PID (‘c’ frame)

On special situations the application might need to interchange information with a destination thru

frames using a non-standard PID (standard AX.25 PID for Information Frames is 0xF0), examples of

such a need are NETROM connections and frames related to a connected TCP/IP over AX.25 circuit.

On such ocassions AGWPE must be signaled of this singularity starting the connection with this frame

instead of a “normal” ‘C’ frame as documented before; the application is also responsible to fill the PID

field of the header of all data frames sent during the connection with the appropriate value (even if the

PID is informed during the connection it has to be “repeated” on every data frame).

The format of the frame would be

Field Length Meaning

AGWPE Port 1 Bytes Port to send the connection

request frame thru

{0=Port1,1=Port2,…}

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘c’ (ASCII 0x63)

Reserved 1 Byte 0x00

PID 1 Byte Non Standard PID to use

Reserved 1 Byte 0x00

CallFrom 10 Bytes Our CallSign-SSID

i.e. LU7DID-11 ended with

null (0x00) used. must had been

previously registered

CallTo 10 Bytes Destination callsign+SSID of the

connection.

DataLen 4 Bytes 0

User (Reserved) 4 Bytes 0

AGWPE would start inmediately to connect the destination callsign-SSID (it could be monitored, if

monitoring has been enabled) thru the ‘S’ frames.

Upon connection or failure the application would receive a ‘C’ frame or a “RETRYOUT” message.

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

24 of 76 12/20/23, 20:32

An application could sustain one connection per distinctive callsigns+SSID for both origin and

destination pairs (only one connection by a given callsign+SSID on origin and destination is allowed by

the AX.25 protocol).

No practical limit do exists on the number of connections an application could sustain with different

destinations, even from the same originating callsign+SSID. This concept, of course, is extended when

many callsigns+SSID are registered by the same application.

It is an application duty, as we’ll see on the relevant frames sent by AGWPE, to discriminate among data

coming from diferent connections.

Please note that the destination application must know exactly how to handle data frames with non-

standard PID in order for a data exchange to take place, the connection would succeed even with

destinations not truly aware of the non-standard PID (the AX.25 protocol doesn’t include PID

information on a connection frame).

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

25 of 76 12/20/23, 20:32

Send Data in “raw” AX.25 format (‘K’ frame)

On special situations when the application needs to control the exact content of a given frame (as when

applications needs to deal with a hardware TNC in KISS mode) the complete frame could be built and

sent using this frame.

This facility should be used on very special applications only.

The format of the frame follows:

Field Length Meaning

AGWPE Port 1 Bytes Port to send the data frame thru

{0=Port1,1=Port2,…}

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘K’ (ASCII 0x4B)

Reserved 1 Byte 0x00

PID 1 Byte 0x00

Reserved 1 Byte 0x00

CallFrom 10 Bytes 10 0x00

Actual origin is stated in the

raw frame

CallTo 10 Bytes 10 0x00

Actual destination is stated in

the raw frame

DataLen 4 Bytes Number of Data Bytes to be

transferred.

User (Reserved) 4 Bytes 0

The complete frame (AX.25 header followed by data if applicable) in raw format must follow as data,

the exact length of it must be reflected on the DataLen field.

Full knowledge of the intricancies of the AX.25 must be mastered by the brave programmer trying to

use this frame, for what is worth the heartfull recommendation is to try to identify other frames or

combination of frames most suitable for a given purpose, so use this frame format as an absolute last

resort.

For those brave souls in need to still use it the following recommendations should be used (refer to the

AX.25 Protocol documentation for the naming conventions).

Field Length Description

Flag 1 byte Will not be the standard

0b01111110 flag but

the “TNC” to use

00=Port 1

16=Port 2

…

Address 112/360 bits AX.25 coded Origin, Destination

and (optionally) digipeaters.

Control 1 byte AX.25 Control Field

PID 1 byte AX.25 PID

Info N bytes AX.25 Information Area

Please note than the AX.25 FCS and the ending Flag are NOT included. No KISS escape codes nor bit

stuffing is required to be performed (AGWPE would add them as needed).

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

26 of 76 12/20/23, 20:32

As per AGWPE Version 2000.20 this frame should be used to send only unproto information. This is a

general recommendation, still it could be used to send both connected

and unconnected information. When connected information is sent using this frame the application will

not receive monitor frames (T frames) with the frames sent. Connected frames will be both received as

“K” frames and the appropriate monitoring frame.

Even if AGWPE handles AX.25 frames larger than 255 bytes not so many other programs could over

the air, so it’s a reasonably programming practice to ensure than the length of the data to be transferred is

equal to or less than 255 bytes.

Activate reception of Frames in “raw” format (‘k’ Frame)

AGWPE send to the application all data using several frame formats (D or U for actual connected or

unconnected data, I or S for monitored information, T for information the application sent, etc).

In particular, the I and S frames (as we would see) provides some “decoding” of the information as part

of the data area of the frame; things such as the AX.25 header components, NETROM circuit control

and TCP/IP connection control data are parsed and included in plain ASCII before the actual data.

The application program could, for light usages, process and decode the contents of either the ‘I’

(information) or ‘S’ (supervisory) frames.

For more serious usages it’s likely the application would need the complete AX.25 frame and process it

by it’s own means.

This is accomplished with this frame, the application signals AGWPE that from this moment on all

relevant information should be sent also in raw format; AGWPE will still continue to provide

information with the regular frames (D/U/I/S) and it would also send the raw version of them using ‘K’

frames.

The format of the frame would be:

Field Length Meaning

AGWPE Port 1 Bytes 0x00

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘k’ (ASCII 0x6B)

Reserved 1 Byte 0x00

PID 1 Byte 0x00

Reserved 1 Byte 0x00

CallFrom 10 Bytes 10 0x00

CallTo 10 Bytes 10 0x00

DataLen 4 Bytes 0

User (Reserved) 4 Bytes 0

AGWPE doesn’t recognize this frame in any particular way, however, ‘K’ frames should start to flow

into the application reflecting any activity at the ports.

This frame acts like a switch, the first time issued it enables the reception of raw frames while the

second disables it and so on; in general on odd times it would enable and on even times it would disable.

Follows a sample frame using a dump format of this frame (16 hexadecimal formatted bytes at the left

and the ASCII, interpretation when feasible at the right), this sample could be used for study and

comparation purposes.

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

27 of 76 12/20/23, 20:32

|00 00 00 00 6B 00 00 00 00 00 00 00 00 00 00 00 |....k...........

|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................

|00 00 00 00 -- -- -- -- -- -- -- -- -- -- -- -- |....

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

28 of 76 12/20/23, 20:32

Frames Sent by AGWPE to the Application

AGWPE might send information to the application basically for two main reasons:

• In response of a query from the application.

• To inform the application about some event (data arrived, monitoring frames, etc).

The frame format is exactly the same than the previously seen used by the application side, in fact, many

frames shares the same datakind, so the meaning might differ depending on the direction of the

information flow.

A cross reference among frames sent by the application and by AGWPE could be seen in a later section

of this document (See Frame Cross-Reference on page 42)

Version Number (‘R’ frame)

This frame is sent by AGWPE to the application in response of an ‘R’ frame sent to AGWPE carrying

the information about the current AGWPE version.

The format of the frame would be:

Field Length Meaning

AGWPE Port 1 Bytes 0x00

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘R’ (ASCII 0x52)

Reserved 1 Byte 0x00

PID 1 Byte 0x00

Reserved 1 Byte 0x00

CallFrom 10 Bytes 10 0x00

CallTo 10 Bytes 10 0x00

DataLen 4 Bytes 8

User (Reserved) 4 Bytes 0

8 bytes of data would follow (as indicated by the DataLen field) containing the AGWPE version with

the following contents:

Offset (Byte or Characters) into the Data Area Meaning

+00 LSB of Major Version

+01 MSB of Major Version

+02 not used

+03 not used

+04 LSB of Minor Version

+05 MSB of Minor Version

+06 not used

+07 not used

Follows a sample frame using a dump format of this frame (16 hexadecimal formatted bytes at the left

and the ASCII, interpretation when feasible at the right), this sample could be used for study and

comparation purposes.

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

29 of 76 12/20/23, 20:32

|00 00 00 00 52 00 00 00 00 00 00 00 00 00 00 00 |....R...........

|00 00 00 00 00 00 00 00 00 00 00 00 08 00 00 00 |................

|00 00 00 00 D0 07 00 00 14 00 00 00 -- -- -- -- |............

Callsign Registration (‘X’ Frame)

This frame would be sent by AGWPE in response for a callsign registration (‘X’ frame) sent by the

application.

The format of the frame would be:

Field Length Meaning

AGWPE Port 1 Bytes 0x00

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘X’ (ASCII 0x58)

Reserved 1 Byte 0x00

PID 1 Byte 0x00

Reserved 1 Byte 0x00

CallFrom 10 Bytes Registered CallSign-SSID ended

with null (0x00)

CallTo 10 Bytes 10 0x00

DataLen 4 Bytes 1

User (Reserved) 4 Bytes 0

1 byte of data would follow (as indicated by the DataLen field) containing the result of the registration:

Offset (Byte or Characters) into the Data Area Meaning

+00 0x00 Registration Failed

0x01 Registration Successful

The application must refrain any further use of the callsign if the registration failed because it means that

callsign is already in use (already registered) with AGWPE.

Follows a sample frame using a dump format of this frame (16 hexadecimal formatted bytes at the left

and the ASCII, interpretation when feasible at the right), this sample could be used for study and

comparation purposes.

|00 00 00 00 58 00 00 00 4C 55 37 44 49 44 2D 34 |....X...LU7DID-4

|00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 |................

|00 00 00 00 01 -- -- -- -- -- -- -- -- -- -- -- |.....

Port Information (‘G’ Frame)

This frame would be sent by AGWPE in response of a query for Port information (‘G’ frame) sent by

the application.

The format of the frame would be:

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

30 of 76 12/20/23, 20:32

Field Length Meaning

AGWPE Port 1 Bytes 0x00

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘G’ (ASCII 0x47)

Reserved 1 Byte 0x00

PID 1 Byte 0x00

Reserved 1 Byte 0x00

CallFrom 10 Bytes 10 0x00

CallTo 10 Bytes 10 0x00

DataLen 4 Bytes Length of port info

User (Reserved) 4 Bytes 0

A stream of bytes would follow (as indicated by the DataLen field) containing the port data using the

following format:

• Total number of ports in ASCII (i.e. “1” ASCII 0x31) followed by “;”.

• A data stream for each port using the general format “Portn xxxxxxx” followed by “;” with “n”

being the port number (i.e. “Port1”, “Port2”…) and “xxxxxxx” being the description of the port

as seen in the Properties dialog of AGWPE.

An example of a typical data area showing this information for two ports is

2;Port1 with KPC3 on COM1: 145.03 Mhz;Port2 with Loopback Port;

The first port information belongs to the Port1, the second to Port2 and so on. The application could rely

on the “;” character to “parse” the successive components; AGWPE guarantees that the text information

won’t contain ‘;’ characters other than the ones to separate succesive information pieces.

The total length of the stream would depend on the number of ports defined with AGWPE

Follows a sample frame using a dump format of this frame (16 hexadecimal formatted bytes at the left

and the ASCII, interpretation when feasible at the right), this sample could be used for study and

comparation purposes.

|00 00 00 00 47 00 00 00 00 00 00 00 00 00 00 00 |....G...........

|00 00 00 00 00 00 00 00 00 00 00 00 5C 00 00 00 |............\...

|00 00 00 00 32 3B 50 6F 72 74 31 20 77 69 74 68 |....2;Port1 with

|20 4B 50 43 33 20 4F 6E 20 43 4F 4D 31 3A 20 31 | KPC3 On COM1: 1

|34 35 2E 30 33 30 4D 68 7A 20 31 32 30 30 62 61 |45.030Mhz 1200ba

|75 64 3B 50 6F 72 74 32 20 77 69 74 68 20 4C 6F |ud;Port2 with Lo

|6F 70 42 61 63 6B 20 50 6F 72 74 3B 00 00 00 00 |opBack Port;....

|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................

Capabilities of a Port (‘g’ Frame)

This frame is generated by AGWPE in response of a ‘g’ frame sent by the application and contain static

configuration information as well as dynamically updated values for the particular port being queried.

The format of the frame would be:

Field Length Meaning

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

31 of 76 12/20/23, 20:32

AGWPE Port 1 Bytes Port being queried

0x00 Port1

0x01 Port2 ….

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘g’ (ASCII 0x67)

Reserved 1 Byte 0x00

PID 1 Byte 0x00

Reserved 1 Byte 0x00

CallFrom 10 Bytes 10 0x00

CallTo 10 Bytes 10 0x00

DataLen 4 Bytes 12

User (Reserved) 4 Bytes 0

12 bytes of data would follow (as indicated by the DataLen field) containing the following information

about the particular port referenced by the header’s AGWPEPort field :

Offset (Byte or Characters) into the Data Area Meaning

+00 On air baud rate (0=1200/1=2400/2=4800

/3=9600…)

+01 Traffic level (if 0xFF the port is not in autoupdate

mode)

+02 TX Delay

+03 TX Tail

+04 Persist

+05 SlotTime

+06 MaxFrame

+07 How Many connections are active on this port

+08 LSB Low Word

+09 MSB Low Word

+10 LSB High Word

+11 MSB High Word

HowManyBytes (received in the last 2 minutes)

as a 32 bits (4 bytes) integer. Updated every two

minutes.

Follows a sample frame using a dump format of this frame (16 hexadecimal formatted bytes at the left

and the ASCII, interpretation when feasible at the right), this sample could be used for study and

comparation purposes.

|01 00 00 00 67 00 00 00 4C 55 37 44 49 44 2D 34 |....g...LU7DID-4

|00 00 00 00 00 00 00 00 00 00 00 00 0C 00 00 00 |................

|00 00 00 00 00 01 19 04 C8 04 07 00 01 00 00 00 |................

Frames Outstanding on a Port (‘y’ Frame)

This frame is generated by AGWPE in response of a ‘y’ frame sent by the application and contains how

many frames are waiting to be transmitted by AGWPE thru the indicated port (from all sources, not only

from the application that makes the queries).

It could (should) be used by the application to introduce a “reality check” into the amount of data being

sent to AGWPE for transmission in order to accommodate the real bandwidth of the port.

The format of the frame would be:

Field Length Meaning

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

32 of 76 12/20/23, 20:32

AGWPE Port 1 Bytes Port being queried

0x00 Port1

0x01 Port2 ….

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘y’ (ASCII 0x79)

Reserved 1 Byte 0x00

PID 1 Byte 0x00

Reserved 1 Byte 0x00

CallFrom 10 Bytes 10 0x00

CallTo 10 Bytes 10 0x00

DataLen 4 Bytes 4

User (Reserved) 4 Bytes 0

4 bytes of data would follow (as indicated by the DataLen field) containing a 32 bits integer with the

total number of frames waiting to be transmitted (outstanding frames) :

Offset (Byte or Characters) into the Data Area Meaning

+00 LSB Low Word

+01 MSB Low Word

+02 LSB High Word

+03 MSB High Word

Number of Frames waiting to be transmitted on

the queried port.

Follows a sample frame using a dump format of this frame (16 hexadecimal formatted bytes at the left

and the ASCII, interpretation when feasible at the right), this sample could be used for study and

comparation purposes.

|00 00 00 00 79 00 00 00 9C 09 58 00 A0 BE 9D 01 |....y.....X.....

|98 BE 9D 01 00 00 00 00 24 00 00 00 04 00 00 00 |........$.......

|98 02 BE 00 01 00 00 00 -- -- -- -- -- -- -- -- |........

Frames Outstanding on a Connection (‘Y’ Frame)

This frame is conceptually similar to the previous one but referring to a particular AX.25 L2 connection

(CallFrom/CallTo pair) on a given port; it’s returned by AGWPE when queried thru a ‘Y’ frame over an

existing connection.

As in the ‘y’ frame this information could (should) be used by the application to control the pace of

information delivery on a given connection in order to adjust it realistically to the port bandwidth.

The format of the frame would be:

Field Length Meaning

AGWPE Port 1 Bytes Port being queried

0x00 Port1

0x01 Port2 ….

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘Y’ (ASCII 0x59)

Reserved 1 Byte 0x00

PID 1 Byte 0x00

Reserved 1 Byte 0x00

CallFrom 10 Bytes Callsign-SSID ended with null

(0x00)

CallTo 10 Bytes CallSign-SSID ended with null

(0x00)

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

33 of 76 12/20/23, 20:32

DataLen 4 Bytes 4

User (Reserved) 4 Bytes 0

4 bytes of data would follow (as indicated by the DataLen field) containing a 32 bits integer with the

total number of frames waiting to be transmitted (outstanding frames) :

Offset (Byte or Characters) into the Data Area Meaning

+00 LSB Low Word

+01 MSB Low Word

+02 LSB High Word

+03 MSB High Word

Number of Frames waiting to be transmitted on

the given AX.25 connection

Heard Stations on a Port (‘H’ Frame)

This frame is produced by AGWPE in response of an ‘H’ frame sent by the application and contains

information about the stations heard by AGWPE on a given port.

Upon a single ‘H’ frame sent by the application AGWPE would produce 20 sucessive ‘H’ frames, one

for each station heard.

If on a given port more than 20 stations were heard only the 20 most recently heard would be sent, if less

than 20 stations were heard AGWPE would send as many “empty” ‘H’ frames as required to make the

total number sent as 20.

The frame format would be

Field Length Meaning

AGWPE Port 1 Bytes Queried Port

0x00 Port1

0x01 Port2 ….

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘H’ (ASCII 0x48)

Reserved 1 Byte 0x00

PID 1 Byte 0x00

Reserved 1 Byte 0x00

CallFrom 10 Bytes 10 0x00

CallTo 10 Bytes 10 0x00

DataLen 4 Bytes Length of heard info

User (Reserved) 4 Bytes 0

A stream of bytes would follow (as indicated by the DataLen field) containing the heard data using the

following format:

• Callsign and SSID in ASCII ended with a blank.

• Timestamp of first hearing ended with a blank.

• Timestamp of last hearing ended with a blank.

• A null (0x00) at the end of the stream.

An example of a typical data area showing this information would be

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

34 of 76 12/20/23, 20:32

LU7DID-4 Mon,21Feb2000 11:14:30 Mon,21Feb2000 12:18:22

After the null (0x00) signaling the end of the “plain ASCII” heard information follows two

SYSTEMTIME structures containing the timestamp of the first hearing and the last hearing (see the

Windows SDK help for information about this standard structure).

The application could “parse” the timestamps and get the individual components such as day, month,

year, hour, minute and seconds of both the first hearing and last hearing information or to process the

information using the SYSTEMTIME structures as it best suit the programmer’s preferences.

Take into consideration this information is stored by AGWPE from the moment it had been started the

last time and it’s not preserved by AGWPE across succesive starts (meaning, the heard information

would be empty just after AGWPE starts).

The empty entries (used to complete up to 20 entries) would have the callsign and timestamp

information

not filled, so it would look like

00:00:00 00:00:00

Unexpected data might be expected by the application on an empty frame, it’s on the application

responsibility to define when an entry contain valid information or it’s just empty and should be

discarded.

Follows a sample frame using a dump format of this frame (16 hexadecimal formatted bytes at the left

and the ASCII, interpretation when feasible at the right), this sample could be used for study and

comparation purposes.

|-- -- -- -- -- -- -- -- 01 00 00 00 48 00 00 00 |H...

|4C 55 37 44 49 44 00 00 74 BD 9D 01 00 00 00 00 |LU7DID..t.......

|F0 BE 9D 01 5A 00 00 00 68 A0 F7 BF 20 20 20 4C |....Z...h... L

|55 37 44 49 44 20 54 75 65 2C 32 32 46 65 62 32 |U7DID Tue,22Feb2

|30 30 30 20 31 30 3A 35 32 3A 31 32 20 20 54 75 |000 10:52:12 Tu

|65 2C 32 32 46 65 62 32 30 30 30 20 31 30 3A 35 |e,22Feb2000 10:5

|36 3A 30 38 00 27 11 D0 07 02 00 02 00 16 00 0A |6:08.'..........

|00 34 00 0C 00 32 00 D0 07 02 00 02 00 16 00 0A |.4...2..........

|00 38 00 08 00 3E -- -- -- -- -- -- -- -- -- -- |.8...>

AX.25 Connection Received (‘C’ Frame)

This frame is sent by AGWPE to the application when an AX.25 connection has been made, either

started from the application from a registered callsign+SSID or initiated by a remote node with a

registered callsign+SSID.

The frame format would be

Field Length Meaning

AGWPE Port 1 Bytes Port where the connection had

been made

0x00 Port1

0x01 Port2 ….

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘C’ (ASCII 0x43)

Reserved 1 Byte 0x00

PID 1 Byte 0x00

Reserved 1 Byte 0x00

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

35 of 76 12/20/23, 20:32

CallFrom 10 Bytes Callsign+SSID who the

connection has been made to

(usually the remote end) ended by

null (0x00)

CallTo 10 Bytes CallSign+SSID receiving the

connection (usually one of our

registered callsigns) ended by null

(0x00)

DataLen 4 Bytes Length of connect info

User (Reserved) 4 Bytes 0

A stream of bytes would follow (as indicated by the DataLen field) containing the connection message.

Depending on who started the connection the connection message could be:

• Connection started by our application, the message would be
*** CONNECTED With {Callsign-SSID}

• Connection started by the other station, the message would be
*** CONNECTED To Station {Callsign-SSID}

The application might “parse” the message to detect whether a given connection is the result of our

connection request (thru a ‘C’ frame) or initiated independently the the other end; this verification has to

always be made since we could not rule out the other station independently started a connection even

simultaneously with our connection request (at the very least, it should be a good programming practice

to perform that verification whenever a ‘C’ frame is received).

Follows a sample frame using a dump format of this frame (16 hexadecimal formatted bytes at the left

and the ASCII, interpretation when feasible at the right), this sample could be used for study and

comparation purposes.

|01 00 00 00 43 00 00 00 4C 55 37 44 49 44 2D 33 |....C...LU7DID-3

|00 2F 4C 55 37 44 49 44 2D 34 00 00 23 00 00 00 |./LU7DID-4..#...

|D3 73 F7 BF 2A 2A 2A 20 43 4F 4E 4E 45 43 54 45 |.s..*** CONNECTE

|44 20 54 6F 20 53 74 61 74 69 6F 6E 20 4C 55 37 |D To Station LU7

|44 49 44 2D 33 0D 00 -- -- -- -- -- -- -- -- -- |DID-3..

Connected AX.25 Data (‘D’ Frame)

This is a frame sent by AGWPE to the application when an information frame part of an established

AX.25 connection directed to a registered station is detected.

The frame format would be

Field Length Meaning

AGWPE Port 1 Bytes Port where the connection had

been made

0x00 Port1

0x01 Port2 ….

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘D’ (ASCII 0x44)

Reserved 1 Byte 0x00

PID 1 Byte AX.25 PID

Reserved 1 Byte 0x00

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

36 of 76 12/20/23, 20:32

CallFrom 10 Bytes Callsign+SSID who sends the

information(usually the remote

end) ended by null (0x00)

CallTo 10 Bytes CallSign+SSID receiving the

information (usually one of our

registered callsigns) ended by null

(0x00)

DataLen 4 Bytes Length of data info

User (Reserved) 4 Bytes 0

A stream of bytes would follow (as indicated by the DataLen field) containing the connected data in a

fully transparent way (binary information, no delimiters, bit stuffing or escape codes), the data is as sent

by the other end and could be inmediately used by the application without further processing.

Note that the PID reflected on the frame would be 0xF0 if the connection has been established by us

using the ‘C’ command, could be any non-standard PID if the connection had been established by us

using the ‘c’ command and could be anything if the connection has been established by the other end.

AGWPE guarantees the information is sent just once to the application in the right sequence (all the

retries of information and resending of it due to link conditions is hidden from the application

perspective), the frame doesn’t provide any information about the frame sequence as received on the

AX.25 link, in case the application needs that information pairing of the ‘D’ frame with other

monitoring information should be made by the application by it’s own means (albeit, this need should be

extremely infrequent on normal uses).

Note there is no limit on the amount of data sent by AGWPE to the application with this frame since it’s

not necessarily related to a concrete AX.25 frame; so the application should not expect any given length

to be used (i.e. several AX.25 frames could be bound together on a single ‘D’ frame sent by AGWPE).

Since AGWPE supports the latest AX.25 specification no guarantee the frame is limited to 256 bytes do

actually exist and the application should be able to process data of any arbitrary length.

Follows a sample frame using a dump format of this frame (16 hexadecimal formatted bytes at the left

and the ASCII, interpretation when feasible at the right), this sample could be used for study and

comparation purposes.

|01 00 00 00 44 00 F0 00 4C 55 37 44 49 44 2D 33 |....D...LU7DID-3

|00 47 4C 55 37 44 49 44 2D 34 00 00 02 00 00 00 |.GLU7DID-4......

|A8 6D 45 00 62 0D -- -- -- -- -- -- -- -- -- -- |.mE.b.

Monitored Connected Information (‘I’ Frame)

This frame is sent by AGWPE to the application whenever any exchange of connected information is

detected among any pair of stations on any port, for AGWPE to send this information the monitoring

must be previously activated by the application thru the sending of a ‘m’ frame to AGWPE.

The frame format would be

Field Length Meaning

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

37 of 76 12/20/23, 20:32

AGWPE Port 1 Bytes Port where the frame has been

heard

0x00 Port1

0x01 Port2 ….

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘I’ (ASCII 0x49)

Reserved 1 Byte 0x00

PID 1 Byte 0x00

Reserved 1 Byte 0x00

CallFrom 10 Bytes Callsign+SSID who sends the

information(usually the remote

end) ended by null (0x00)

CallTo 10 Bytes CallSign+SSID receiving the

information (usually one of our

registered callsigns) ended by null

(0x00)

DataLen 4 Bytes Length of monitored info

User (Reserved) 4 Bytes 0

A stream of bytes would follow (as indicated by the DataLen field) containing the decoded headers of

the AX.25 Frames and the connected data as sent by the transmitting end and could be inmediately used

by the application without further processing.

AGWPE also includes a decode NETROM header or a decoded TCP/IP header when the respective

frame types are detected.

The application might parse the information to extract both information relevant to the connected link

and the actual data being interchanged.

The AX.25 headers included in the data area of the frame usually follows the format (example)

1:Fm LU7DID-4 To SV2AGW-2 <I R3 S1 pid=F0 Len=29 >[12:23:49]

Followed by the actual data being exchanged (binary information).

The application might choose to process the information and extract the relevant components, if so, the

following things must be considered.

• The AX.25 header is sent by AGWPE in plain ASCII, no binary information, while the data

itself is sent and should be handled as binary.

• The first number is the port where the information has been heard, please note it follows the

convention used by AGWPE on it’s Property Dialog and NOT the convention used on the frame

headers (so “1’ means “Port1”, “2” means “Port2” and so on).

• The decoded header is presented by AGWPE in a consistent way, first the “From” (origin)

station followed by the “To” (destination) station in callsign-SSID format.

• Then follows the AX.25 frame header data, a constant “I” meaning an information frame,

followed by the Received and Sent AX.25 counters (N(R) and N(S) on the AX.25 protocol

definition) as seen by the sending application.

• Follows the PID of the frame.

• Follows the length of the binary information on the frame.

• Then a timestamp of the frame reception at AGWPE.

After the frame AX.25 header a CR (0x0D) follows and then the actual data in binary form.

Please note the application should handle TWO different lengths when handling this frame, the one

stated on the header (DataLen) refers to the total amount of data transferred after the AGWPE header

(which includes BOTH the decoded AX.25 header and the binary data).

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

38 of 76 12/20/23, 20:32

A second length is the one stated on the decoded AX.25 header (Len=…) which referes to the actual

amount of data transferred AFTER the header.

The application, in order to process this frame, should

• First get the whole data block as stated on the AGWPE header (DataLen).

• Then it should parse the data block till the first CR (0x0D) character and decode it on their

components (Port/From/To/DataKind/N(R) /N(S)/Pid/Len).

• Then get as many bytes after the CR as stated in the “Len=” part of the AX.25 header decoded

by AGWPE as plain text, those bytes (which are a binary block without an escape code, KISS

masking or bit stuffing) are the actual data exchanged between both stations.

• Beware that AGWPE might include some few extra bytes of information after the binary block

actually exchanged by the two connected stations being monitored which should be ignored by

the application processing an ‘I’ frame. The application should read them in order to complete

the processing of the AGWPE frame but later should ignore them.

The application should be aware on the fact that the data transmitted (or received) by it would be

communicated by AGWPE using the appropriate frame AND also thru an ‘I’ frame, so if the ‘I’ frames

sent by AGWPE are used with any functional purpose the redundancy has to be considered and solved

by the application.

The conceptual thinking behind an ‘I’ frame is to provide the application with a way to provide it with

“presentation” ready monitored information rather than to rely on them for any functional purpose

(altrough, this could be done provided appropriate caution is taken as show above).

Take note that the correct PID of the monitored frame is correctly reflected on the “decoded” header

provided by AGWPE rather than on the relevant field on the AGWPE header.

Follows a sample frame using a dump format of this frame (16 hexadecimal formatted bytes at the left

and the ASCII, interpretation when feasible at the right), this sample could be used for study and

comparation purposes.

|01 00 00 00 49 00 00 00 4C 55 37 44 49 44 2D 34 |....I...LU7DID-4

|00 E7 4C 55 37 44 49 44 00 FA 6A 00 6F 00 00 00 |..LU7DID..j.o...

|2C 0E 45 00 20 32 3A 46 6D 20 4C 55 37 44 49 44 |,.E. 2:Fm LU7DID

|2D 34 20 54 6F 20 4C 55 37 44 49 44 20 3C 49 20 |-4 To LU7DID <I

|50 20 52 31 20 53 34 20 70 69 64 3D 46 30 20 4C |P R1 S4 pid=F0 L

|65 6E 3D 34 39 20 3E 5B 31 30 3A 35 35 3A 35 35 |en=49 >[10:55:55

|5D 0D 0D 5B 4C 55 37 44 49 44 40 4C 55 37 44 49 |]..[LU7DID@LU7DI

|44 2D 34 5D 20 42 2C 43 2C 44 2C 45 2C 58 2C 49 |D-4] B,C,D,E,X,I

|2C 4D 2C 3F 2C 4E 2C 50 2C 55 2C 4A 2C 52 3A 20 |,M,?,N,P,U,J,R:

|0D 0D 00 -- -- -- -- -- -- -- -- -- -- -- -- -- |...

Monitored Supervisory Information (‘S’ Frames)

Conceptually similar to the ‘I’ frames discussed before AGWPE sends the application information

regarding supervisory frames interchanged among any two stations as a part of the AX.25 connected

session as stated on the AX.25 protocol in order to administer a given link.

Those frames are usually

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

39 of 76 12/20/23, 20:32

• SABM (Connection Request).

• UA (Connection Acknowledge/Accepted).

• DISC (Disconnection Request).

• DM (Disconnect Accepted).

• RR (Receiver Ready)

• RNR (Receiver not Ready)

• REJ (Frame Rejected)

Those frames doesn’t transport information other than their own meaning in the context of a given

connection.

The frame format would be

Field Length Meaning

AGWPE Port 1 Bytes Port where the frame has been

heard

0x00 Port1

0x01 Port2 ….

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘S’ (ASCII 0x53)

Reserved 1 Byte 0x00

PID 1 Byte 0x00

Reserved 1 Byte 0x00

CallFrom 10 Bytes Callsign+SSID who sends the

information(usually the remote

end) ended by null (0x00)

CallTo 10 Bytes CallSign+SSID receiving the

information (usually one of our

registered callsigns) ended by null

(0x00)

DataLen 4 Bytes Length of supervisory info

User (Reserved) 4 Bytes 0

A stream of bytes would follow (as indicated by the DataLen field) containing the decoded headers of

the AX.25 Supervisory Frames sent by the transmitting end and could be inmediately used by the

application without further processing.

The usual format of the information is as follows

1:Fm LU7DID-2 To SV2AGW-11 <RR P/F R2 >[12:11:19]

In the above example a “RR” frame is shown; all information provided by AGWPE is formatted as plain

ASCII text (no binary elements) and is “presentation ready” for the application; the application could

choose to “parse” that information and use it functionally if needed.

Most of the programming recommendations provided for the ‘I’ frames still does apply with the

exception of no data to be associated with the frame after the header.

Follows a sample frame using a dump format of this frame (16 hexadecimal formatted bytes at the left

and the ASCII, interpretation when feasible at the right), this sample could be used for study and

comparation purposes.

|01 00 00 00 53 00 00 00 4C 55 37 44 49 44 2D 33 |....S...LU7DID-3

|00 E7 4C 55 37 44 49 44 2D 34 00 00 2F 00 00 00 |..LU7DID-4../...

|2C 0E 45 00 20 32 3A 46 6D 20 4C 55 37 44 49 44 |,.E. 2:Fm LU7DID

|2D 33 20 54 6F 20 4C 55 37 44 49 44 2D 34 20 3C |-3 To LU7DID-4 <

|53 41 42 4D 20 50 3E 5B 31 30 3A 35 37 3A 35 32 |SABM P>[10:57:52

|5D 0D 00 -- -- -- -- -- -- -- -- -- -- -- -- -- |]..

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

40 of 76 12/20/23, 20:32

Monitored Unproto Information (‘U’ Frames)

Conceptually similar to the ‘I’ frames discussed before AGWPE sends the application information

regarding unnumbered (unproto) frames frames interchanged among any two stations as a part of the

AX.25 connected session as stated on the AX.25 protocol in order to administer a given link.

Those frames are usually related to beacons or broadcasted data of some sort or in more advanced uses

convey NETROM or TCP/IP links related information.

The frame format would be

Field Length Meaning

AGWPE Port 1 Bytes Port where the frame has been

heard

0x00 Port1

0x01 Port2 ….

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘U’ (ASCII 0x55)

Reserved 1 Byte 0x00

PID 1 Byte 0x00

Reserved 1 Byte 0x00

CallFrom 10 Bytes Callsign+SSID who sends the

information(usually the remote

end) ended by null (0x00)

CallTo 10 Bytes CallSign+SSID receiving the

information (usually one of our

registered callsigns) ended by null

(0x00)

DataLen 4 Bytes Length of unproto info

User (Reserved) 4 Bytes 0

A stream of bytes would follow (as indicated by the DataLen field) containing the decoded headers of

the AX.25 Unproto Frames sent by the transmitting end and could be inmediately used by the

application without further processing.

The usual format of the information is as follows

1:Fm LU7DID-2 To SV2AGW-11 <UI pid=F0 Len=57 >[12:11:19]

The application might choose to process the information and extract the relevant components, if so, the

following things must be considered.

• The AX.25 header is sent by AGWPE in plain ASCII, no binary information, while the data

itself is sent and should be handled as binary.

• The first number is the port where the information has been heard, please note it follows the

convention used by AGWPE on it’s Property Dialog and NOT the convention used on the frame

headers (so “1’ means “Port1”, “2” means “Port2” and so on).

• The decoded header is presented by AGWPE in a consistent way, first the “From” (origin)

station followed by the “To” (destination) station in callsign-SSID format.

• Then follows the AX.25 frame header data, a constant “UI” meaning an unproto frame, as seen

by the sending application.

• Follows the PID of the frame.

• Follows the length of the binary information on the frame.

• Then a timestamp of the frame reception at AGWPE.

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

41 of 76 12/20/23, 20:32

After the frame AX.25 header a CR (0x0D) follows and then the actual data in binary form.

Please note the application should handle TWO different lengths (as if the ‘I’ frame) when handling this

frame, the one stated on the header (DataLen) refers to the total amount of data transferred after the

AGWPE header (which includes BOTH the decoded AX.25 header and the binary data).

A second length is the one stated on the decoded AX.25 header (Len=…) which referes to the actual

amount of data transferred AFTER the header.

The application, in order to process this frame, should

• First get the whole data block as stated on the AGWPE header (DataLen).

• Then it should parse the data block till the first CR (0x0D) character and decode it on their

components (Port/From/To/DataKind/Pid/Len).

• Then get as many bytes after the CR as stated in the “Len=” part of the AX.25 header decoded

by AGWPE as plain text, those bytes (which are a binary block without an escape code, KISS

masking or bit stuffing) are the actual data exchanged between both stations.

• Beware that AGWPE might include some few extra bytes of information after the binary block

actually exchanged by the two connected stations being monitored which should be ignored by

the application processing an ‘I’ frame. The application should read them in order to complete

the processing of the AGWPE frame but later should ignore them.

The application should be aware on the fact that the data transmitted (or received) by it would be

communicated by AGWPE using the appropriate frame AND also thru an ‘U’ frame, so if the ‘U’

frames sent by AGWPE are used with any functional purpose the redundancy has to be considered and

solved by the application.

The conceptual thinking behind an ‘U’ frame is to provide the application with a way to provide it with

“presentation” ready monitored information rather than to rely on them for any functional purpose

(altrough, this could be done provided appropriate caution is taken as show above).

Take note that the correct PID of the monitored frame is correctly reflected on the “decoded” header

provided by AGWPE rather than on the relevant field on the AGWPE header.

If the unproto frame transport additional information on known formats used by other protocols such as

NETROM or TCPIP AGWPE would attempt to “decode’ them also and provide a “plain text” version of

them.

Follows a sample frame using a dump format of this frame (16 hexadecimal formatted bytes at the left

and the ASCII, interpretation when feasible at the right), this sample could be used for study and

comparation purposes.

|01 00 00 00 55 00 00 00 4C 55 37 44 49 44 2D 34 |....U...LU7DID-4

|00 E7 4E 45 54 4D 45 00 C8 FA 6A 00 6F 00 00 00 |..NETME...j.o...

|2C 0E 45 00 20 32 3A 46 6D 20 4C 55 37 44 49 44 |,.E. 2:Fm LU7DID

|2D 34 20 54 6F 20 4E 45 54 4D 45 20 3C 55 49 20 |-4 To NETME <UI

|70 69 64 3D 46 30 20 4C 65 6E 3D 35 37 20 3E 5B |pid=F0 Len=57 >[

|31 30 3A 35 37 3A 34 32 5D 0D 0D 42 65 61 63 6F |10:57:42]..Beaco

|6E 20 64 65 20 4E 6F 64 6F 20 4C 55 37 44 49 44 |n de Nodo LU7DID

|2D 34 20 41 64 72 6F 67 75 65 20 42 41 20 41 72 |-4 Adrogue BA Ar

|67 65 6E 74 69 6E 61 20 5B 47 46 30 35 54 45 5D |gentina [GF05TE]

|0D 0D 00 -- -- -- -- -- -- -- -- -- -- -- -- -- |...

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

42 of 76 12/20/23, 20:32

Monitoring Own Information (‘T’ Frames)

All information sent unproto by the application thru the ‘M’ frame is returned by AGWPE once

transmitted as a ‘T’ frame, this frame could be used for confirmation purposes.

The format would be:

Field Length Meaning

AGWPE Port 1 Bytes Port where the connection had

been made

0x00 Port1

0x01 Port2 ….

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘T’ (ASCII 0x54)

Reserved 1 Byte 0x00

PID 1 Byte AX.25 PID

Reserved 1 Byte 0x00

CallFrom 10 Bytes Callsign+SSID who sends the

information(usually the remote

end) ended by null (0x00)

CallTo 10 Bytes CallSign+SSID receiving the

information (usually one of our

registered callsigns) ended by null

(0x00)

DataLen 4 Bytes Length of data info

User (Reserved) 4 Bytes 0

A stream of bytes would follow (as indicated by the DataLen field) containing the sent data in a fully

transparent way (binary information, no delimiters, bit stuffing or escape codes), the data is as sent by

the application and could be (eventually) used inmediately by the application without further processing.

Follows a sample frame using a dump format of this frame (16 hexadecimal formatted bytes at the left

and the ASCII, interpretation when feasible at the right), this sample could be used for study and

comparation purposes.

|00 00 00 00 54 00 00 00 4C 55 37 44 49 44 00 00 |....T...LU7DID..

|38 E7 4C 57 35 44 47 4D 00 FA 6A 00 44 00 00 00 |8.LW5DGM..j.D...

|2C 0E 45 00 20 31 3A 46 6D 20 4C 55 37 44 49 44 |,.E. 1:Fm LU7DID

|20 54 6F 20 4C 57 35 44 47 4D 20 3C 55 49 20 70 | To LW5DGM <UI p

|69 64 3D 46 30 20 4C 65 6E 3D 31 32 20 3E 5B 31 |id=F0 Len=12 >[1

|30 3A 35 39 3A 31 30 5D 0D 3F 20 30 30 30 38 36 |0:59:10].? 00086

|31 34 31 61 61 0D 0D 00 -- -- -- -- -- -- -- -- |141aa...

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

43 of 76 12/20/23, 20:32

Monitored Information in Raw Format (‘K’ Frames)

When enabled to do so thru the ‘r’ Frame AGWPE would send to the application a “raw” version of

every monitored frame (on top of the respective I/S/U frames if enabled to).

This frame is basically a representation of the AX.25 frame actually received on the port.

The AGWPE frame format would be

Field Length Meaning

AGWPE Port 1 Bytes Port where the data frame had

been received thru

{0=Port1,1=Port2,…}

Reserved 3 Bytes 0x00 0x00 0x00

DataKind 1 Byte ‘K’ (ASCII 0x4B)

Reserved 1 Byte 0x00

PID 1 Byte 0x00

Reserved 1 Byte 0x00

CallFrom 10 Bytes 10 0x00

Actual origin is stated in the

raw frame

CallTo 10 Bytes 10 0x00

Actual destination is stated in

the raw frame

DataLen 4 Bytes Number of Data Bytes to be

transferred.

User (Reserved) 4 Bytes 0

The complete frame (AX.25 header followed by data if applicable) in raw format follows as data, the

exact length of it must be reflected on the DataLen field.

Full knowledge of the intricancies of the AX.25 must be mastered by the brave programmer trying to

use this frame, for what is worth the heartfull recommendation is to try to identify other frames or

combination of frames most suitable for a given purpose, so use this frame format as an absolute last

resort.

Probably, for most light uses it would suffice to decode the equivalent information on the I/S/U frames.

For those brave souls in need to still use it the following recommendations should be used (refer to the

AX.25 Protocol documentation for the naming conventions).

Field Length Description

Flag 1 byte Will not be the standard

0b01111110 flag but

the “TNC” to use

00=Port 1

16=Port 2

…

Address 112/360 bits AX.25 coded Origin, Destination

and (optionally) digipeaters.

Control 1 byte AX.25 Control Field

PID 1 byte AX.25 PID

Info N bytes AX.25 Information Area

Please note than the AX.25 FCS and the ending Flag are NOT included. No KISS escape codes nor bit

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

44 of 76 12/20/23, 20:32

stuffing is required to be performed (AGWPE would add them as needed).

Follows a sample frame using a dump format of this frame (16 hexadecimal formatted bytes at the left

and the ASCII, interpretation when feasible at the right), this sample could be used for study and

comparation purposes.

|01 00 00 00 4B 00 00 00 4C 55 37 44 49 44 00 00 |....K...LU7DID..

|38 E7 4C 55 37 44 49 44 2D 34 00 00 42 00 00 00 |8.LU7DID-4..B...

|2C 0E 45 00 00 98 AA 6E 88 92 88 80 98 AA 6E 88 |,.E....n......n.

|92 88 69 38 F0 0D 0A 5B 4C 55 37 44 49 44 40 4C |..i8...[LU7DID@L

|55 37 44 49 44 2D 34 5D 20 42 2C 43 2C 44 2C 45 |U7DID-4] B,C,D,E

|2C 58 2C 49 2C 4D 2C 3F 2C 4E 2C 50 2C 55 2C 4A |,X,I,M,?,N,P,U,J

|2C 52 3A 20 0D 0A -- -- -- -- -- -- -- -- -- -- |,R: ..

Frame Cross-Reference

Follows a cross-reference of all frame types supported by AGWPE and it’s meaning whether they are

sent by either the application to AGWPE or AGWPE to the Application (N/A means frame not

supported on this particular end or no answer frame produced).

DataKind Description Application AGWPE

‘P’ Application Login (User/Password) Login into AGWPE N/A

‘R’ AGWPE Version Query AGWPE Version Answer AGWPE Version

‘G’ Port Information Query AGWPE Ports Answer AGWPE Port

Information

‘g’ Port Capabilities Query AGWPE Port

Capability

Answer queried Port

capabilities

‘X’ Register CallSign Register CallSign Success/Failure of

Registration

‘x’ Unregister CallSign Unregister CallSign N/A

‘y’ Outstanding frames on a Port Query outstanding frames

waiting to be transmitted

on a port

(all sources)

Answer outstanding frames

waiting to be transmitted

on a port (all sources)

‘Y’ Outstanding frames on a connection Query outstanding frames

waiting to be transmitted

on an AX.25 connection

(From/To pair)

Answer outstanding frames

waiting to be transmitted

on a existing AX.25

connection (From/To pair).

‘H’ Heard Stations on a Port Query heard stations on a

port

Answer heard stations on

the requested port (20

frames would be

generated)

‘m’ Start Monitoring Data Start/Stop the flow of

monitoring data

(first time switch on,

second time switch off,

and so on).

N/A

‘M’ Send Unproto Info Send Unproto Info N/A

‘V’ Send Unproto Info VIA Send Unproto Info VIA N/A

‘C’ Start an AX.25 Connection Start an AX.25 connection Success or Failure of

AX.25 Connection Request

‘v’ Start an AX.25 Connection using

digipeaters

Start an AX.25 connection

using digipeaters

N/A

answered as in ‘C’

‘c’ Start a non-standard AX.25

connection (data frames would have

PID not 0xF0)

Start a non standard

AX.25 Connection

N/A

answered as in ‘C’

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

45 of 76 12/20/23, 20:32

‘D’ Connected Data Send Connected Data Receives Connected Data

‘d’ Disconnect an AX.25 connection Start disconnection of

AX.25 connection

Success or Failure of

AX.25 disconnection

‘U’ Unnumbered Information (UI) frame

received for a registered application.

N/A Unnumbered Information

(UI) frame received for a

registered application.

‘I’ Information Frame between any two

connected station (not necessarily

the ones registered by the

application)

N/A Information Frame

monitored

‘S’ Supervisory Frame

(SABM/UA/DISC/DM/RR/REJ)

N/A Supervisory Frame

monitored

‘T’ Monitored frame sent by this

application

N/A Monitored Frame sent by

this application.

‘K’ Raw Frame Raw Frame To be sent Raw Frame Received

‘k’ Start monitoring using raw frames Start/Stop sending

information in raw format.

(First time switch on,

Second switch off, and so

on).

N/A

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

46 of 76 12/20/23, 20:32

Programming Hints, Tips and Techniques

AGWPE could be truly despicted as a “middleware” application, a very powerful one, or in plain

language a component that other applications uses as an enabler to perform “things”, in this case the

“thing” is to exchange information thru AX.25 Packet Radio.

In one hand, AGWPE is extremely easy to use and powerful compared with the alternative which is to

deal directly to the intrincancies of a myriad of different hardware components not to mention the arcane

AX.25 protocol itself.

In the other hand, AGWPE could have a rather step learning curve for the novel programmer; after all

it’s a rather complex piece of software doing a rather complex activity, and as any such software it has

it’s idiosincracyes and “dark spots” that the application programmer should plan for.

No middleware application (no matter how brilliantly conceived and implemented) is more successful

than the applications written or adapted to it, applications is what the final user “uses” and likes (or

dislikes).

Applications could be written by seasoned programmers, fluent on the world of TCP/IP sockets, used to

deal thru different APIs and aware of the fact that no perfect platform (perfectly coherent and bug free)

has ever been written; this audience would flip thru this manual and probably felt at home right away,

with perhaps more attention to the colloquial sidenotes than to the overall technical details.

But applications could also be written by novel programmers with great ideas for whom all those factors

could be truly disabling.

The following sections aims for the second audience, some general references and known

tricks/workarounds would be documented to aid a novel programmer on their first steps; it could be also

useful for the seasoned ones when some part of the reference didn’t fulfill it’s goal to try to clarify a

given funcion (so a programming example could spoke aloud by itself).

Programming Language

The issue of the programming language is easy to fix, Applications programs could be written on almost

anything under the sun as long as

• It could handle standard TCP/IP sockets.

• ….. Could not think on more pre-requisites….

AGWPE itself has been written in MS C++, many examples do exist in the form of short pieces of code

or sample programs provided by the author using that language; this is of course a matter of convenience

and not a pre-requisite by any stretch of the concept that Applications intended to be run with AGWPE

has to be written in C++.

Some rather major pieces of code to work with AGWPE has been written using Delphi 4/5 (Object

Pascal) and surely Visual Basic programmers could extensively benefit from good “helpers” to

implement TCP/IP oriented applications available for free or at reasonable costs.

Those are the languages more common in the Windows world, but any other language satisfying the

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

47 of 76 12/20/23, 20:32

requirements could be used as well.

Nothing prevents that a given application could be implemented on MORE than one language, in fact,

there are some experiences writing a part of an application in (say) Delphi4 and other part of it (as a

DLL) in (say) C++; given the proper “bound” conditions are met nothing prevents such projects to take

place.

While a multilanguage implementation could only make sense on the context of a program really big,

most likely programs will not be that complex to make that a reasonable decision; however, helpers and

other supporting libraries could be developed in the form of shareable components (such as ActiveX

controls or Windows DLLs) that could be shared among almost anything platform making the usage of

AGWPE easier for others to use.

When outlining the prerequisites the need of the Application to run on Windows was made as a relative

statement; AGWPE must run on a Windows environment but the Application doesn’t needs to run on

the same machine as long as it could have TCP/IP connectivity with the machine where AGWPE is

running.

No actual part of the AGWPE API depends on Windows itself (with the exception of the

SYSTEMTIME structure present on the ‘H’ Frames, and that is quite solvable as a problem) and thus an

application for AGWPE could truly be written on any platform as long as it supports some form of

standard TCP/IP, quite extraneous things come to my mind after this statement.

Nothing prevents an AGWPE application to be run under a 8086 DOS, on a Cray machine or a big IBM

mainframe under OS/390 ; hopefully those possibilities could be seen as extreme and certainly not

recommended.

However, a much more down to the ground possibility is for applications either written, adapted or

ported to be run under the very popular Linux environment.

The only drawback of the “multiplatform” approach is the need of a minimum of two machines, one to

run AGWPE (which must run under Windows) and other to run the application; this might or might not

be very exotic as a proposition given the falling prices for hardware.

All the remaining of this document would assume the Application program is implemented under

Windows though.

Talking with AGWPE

The first requirement to use AGWPE from an application is to be able to talk with it, and for that the

application must be able to open, sustain and close a TCP/IP socket.

Countless libraries do exist either free or at reasonable cost to allow almost any language to accomplish

that, most modern versions of the most widely used languages comes from the factory with support for

TCP/IP right inside.

Unfortunately, even if the description at a conceptual level of programming with TCP/IP are common

across any language used, the details might differ from application to application; so it’s sort of difficult

to provide a single and definitive recommendation on how to program that part.

Each programmer should take the general guidelines provided here or in other places pointed, check

with the information provided by the particular libraries and implementation of the compiler at hand and

make the necessary adjustments.

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

48 of 76 12/20/23, 20:32

Using C++

George (SV2AGW) provides a simple sample monitoring program written in C++ for the AGWPE on

his Web site at http://www.forthnet.gr/SV2AGW

While limited in functionality a monitor frame shows a great deal of the most commonly used aspects of

the AGWPE API, but more important, it has ALL the TCP/IP components needed on any program of

any complexity.

A monitor program should open a socket, send some information to AGWPE (i.e. the ‘m’ frame to start

monitoring), receive information thru the socket and eventually close it.

For a detailed information the download of this sample is recommended, it also contains many of the

tips outlined in this document.

Using Delphi4/5

Delphi comes with Visual Component Library (VCL) components to support a TCP/IP socket client.

The application needs to sets the minimum properties (IP Address/TCP Port), make the component

active and be sure handlers are written for the events OnConnect, OnRead,OnError and OnClose.

The connection with AGWPE is quite similar (despite the different information exchanged and the port

number used) to a Telnet application, so check one of the many examples of a Telnet application on how

to handle a connection like this.

Overall Communication Cycle

The communication between an application and AGWPE could take many different “logics” or

“implementations” but the recommended one should implement the following topics.

• Establish a TCP/IP socket to the known IP Address where AGWPE is at TCP port 8000.

◦ Handle both the successful connection of the socket and a unsuccessful one.

◦ Don’t code your program in a way that if it successfully connect with AGWPE

everything is fine but if the connection fails everything goes down the tubes on an

uncontrolled manner.

◦ The user should be able to change the IP address of AGWPE at any time in order to

establish a successful connection. The program should also plan for the user to change

the IP address while AGWPE is connected and this lead to a disconnection/re-connection

cycle automatically performed.

◦ On extremely rare ocassions AGWPE might be so busy that it might delay a little on

establsh a connection, the application should retry a controlled number of times before to

give up and assume a connection could not be made.

• Once the socket has been established the following information should be exchanged with

AGWPE.

◦ Send the login with an authorized User/Password, the application should be flexible to

allow the user to define whether or not the delivery of a login frame is needed and if

needed which is the User/Password to be used.

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

49 of 76 12/20/23, 20:32

http://www.forthnet.gr/sv2agw
http://www.forthnet.gr/sv2agw
http://www.forthnet.gr/sv2agw
http://www.forthnet.gr/sv2agw
http://www.forthnet.gr/sv2agw

◦ Request and Get the AGWPE Version information, verify if the release is proper for the

functions used by the program; refuse to operate the application if the version could not

be obtained or it’s some very old one.

◦ Request and Get information about the AGWPE current port configuration (‘G’).

◦ Optionally, retrieve the capabilities of each port informed (‘g’).

◦ Optionally, enable the sending of monitoring frames (‘m’).

◦ Optionally, enable the sending of raw frames (‘r’).

◦ Optionally, register one or more callsigns+SSID as needed (‘X’), check the success of the

operation before any actual use of it. Do not over-register, register callsigns as needed

during the program execution.

◦ Optionally, Get an initial state of the AGWPE ports (‘y’) and the heard stations (‘H’).

• Once the initial information has been exchanged the application is ready to fully operate with

AGWPE.

◦ Start connections (‘C’,’c’ or ‘v’ as needed) and handle the answer of AGWPE.

◦ Send connected data (‘D’) and receive unsolicited data from other station (‘D’), use the

‘Y’ frame to avoid to send information on a volume not reasonable to the physical

capability of the port (in terms of bandwidth) to handle.

◦ Send unconnected data (‘M’,’V’) such as beacons or other broadcasted data.

◦ Stop connections (‘d’).

◦ Optionally, handle monitored information (‘I’,’S’,’U’ or ‘K’).

◦ Optionally, refresh periodically the status information on AGWPE, the recommended

method would be:

▪ Every reasonable amount of time (i.e. using a 1 minute timer) send a ‘G’ request

to AGWPE.

▪ Even if the ‘G’ information won’t change between successive calls it would return

the Port information.

▪ For every Port informed send to AGWPE a ‘g’, a ‘H’ and a ‘y’ frames requesting

information about the Port status, the stations heard and the queued frames on it.

Process the answer from AGWPE and store it in your own program.

◦ At any momment during the dialog the socket connection could terminate with an error,

your application should be prepared for that. This might happen for some error on the

transport (impossible if running on the same machine, unlikely if running over an

Ethernet connection and more likely if running over a dialup connection) or because for

some reason AGWPE were stopped (or decided to make a…. uhmmmm…. unsolicited

stop).

▪ In such cases the application should try to reconnect (re-establish the socket

connection) a reasonable number of times or until stopped.

▪ Beware that AGWPE doesn’t transport the knowledge of the particular connection

across connections, so when reconnected all the initial configuration steps must be

repeated.

• When the application program needs to terminate (either because the user selected that, the

functional purpose had been acomplished or the program is handling an abnormal termination)

certain steps should be followed.

◦ All connected links should be terminated sending as many ‘d’ frames as needed to

terminate them, it’s not absolutely necessary but recommended that the program waits for

the finalization of the disconnection (a dying program might not afford that luxury).

◦ Unregister all registered callsigns sending a ‘x’ frame for each one.

◦ Close the TCP/IP socket connection with AGWPE.

Frames Fiesta

The absolute key point to manage the communication with AGWPE is to be able to send to it and

receive from it properly formatted frames to accomplish a given activity.

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

50 of 76 12/20/23, 20:32

Sending Frames

This is a relatively easy activity to do if properly organized.

The AGWPE frames are composed by a fixed formatted header with some data added to it depending on

the particular frame being sent.

The development of a particular routine that enable the application to send frames from whatever part of

the program logic when it’s needed is absolutely recommended (in case Object Oriented Programming is

used the equivalent action is to define AGWPE as an object and to provide a method to send frames to

it).

The function/method should be something like the following prototype (in Pascal)

Function Send(cPort : Char;

cDataKind : Char;

cPID : Char;

sFrom : String ;

sTo : String;

iLen : Integer;

sData : String) : Boolean;

This function/method should

• Validate the parameters are valid (i.e. known DataKind, existing port, known PID, valid From/To

for the particular DataKind, etc).

• Format the frame (i.e. transform variable length strings into fixed length & null terminated

strings, etc).

• Verify a proper TCP/IP connection with AGWPE had been already established.

• Send the frame to AGWPE.

• Return a value reflecting the success failure of the action.

A complete and flexible send function/method would probably be the best single investment a

programmer could do at the beginning of the activity with AGWPE.

Once this function is available to send frames to AGWPE would be an surprinsingly trivial thing.

i.e. to register a callsign

Send(NUL,’X’,NUL,’LU7DID-2’,’’,0,’’);

Would do it!!!

George (SV2AGW) proposes the following C++ procedure for a simple routine

void SendPacket(char *ToCall,char *str,int count,int DataKind,int port)

{

if (count==0) count=lstrlen(str);

char szTemp[3000];

MoveMemory(szTemp.&port,sizeof(int));//which port to tx

MoveMemory(szTemp+sizeof(int),&DataKind,sizeof(int));//datakind here LOWORD should be

'D'

//datakind here should be 'D'

MoveMemory(szTemp+(sizeof(int)*2),MyCall,strlen(MyCall)+1);//mycall

MoveMemory(szTemp+(sizeof(int)*2)+10,ToCall,strlen(ToCall)+1);//other station

call

MoveMemory(szTemp+(sizeof(int)*2)+10+10,&count,4);//length of the data we send

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

51 of 76 12/20/23, 20:32

to other station

MoveMemory(szTemp+(sizeof(int)*4)+10+10,str,count+1);//now add the actual data

after leving 4 additional bytes for USER which are reserved for the moment;

TXDATA(szTemp,count+26);//send them over our socket connection

}

The following fragment shows how to use this routine to send an unproto frame to all ports

for (int x=0;x<HowManyPorts;x++)

{

SendPacket("BEACON",test,strlen(test),MKELONNG('M',0),MAKELONG(x,0));

}

A comprehensive information about this and other routines could be found on George’s authored demo

monitoring program.

The following couple of methods written in Delphi4 are used on most (if not all) programs written by

Pedro (LU7DID).

The first method (Write) is just a wrapper that isolates the calling routine about the details of the TCP/IP

connection, basically it verify the link is ready and then pass all the information to a second (send) who

actually delivers the frame.

This routines are used on multithreaded environments so the resources are protected from re-entrancy

issues (this should not be a concern for the writer or a simple, single threaded program), some

proprietary functions for selective tracing and debug are also present that should be ignored.

(*--->>> Write <<<--*)

{*Write information to the packet engine *}

{*--*}

Function TLink.Write(cPort : Char; cPID : Char; cDataKind : Char; szFrom : String; szTo

: String; iDataLen : DWORD; szData : String) : Boolean;

begin { TLink.Write}

{*-----------------------*}

{*Only write to valid *}

{*sockets *}

{* *}

{*--*}

If AGWState <> 2 then begin

PutAGW(1,'AGWPE Not connected, ignoring Write request');

Result := FALSE;

Exit;

end;

Send(AGWSocket,cPort,cPID,cDataKind,szFrom,szTo,iDataLen,szData);

Result := TRUE;

end; { TLink.Write}

(*--->>> Send <<<--*)

{* Function to send a frame to AGWPE (Low Level Routine) *}

{*--*}

Function TLink.Send (Socket : TCustomWinSocket ;

cPort : Char;

cPID : Char;

cDataKind : Char;

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

52 of 76 12/20/23, 20:32

szFrom : String;

szTo : String;

iLen : DWORD;

szBuffer : String) : Boolean;

Var

Index : Integer;

MSB : Byte;

LSB : Byte;

szFrame : String;

szFromAux : String;

szToAux : String;

iBigLen : DWORD;

szBigBuffer : String;

dwStatus : DWORD;

begin { Send }

{*-----------------------*}

{*Re-entrancy protection *}

{*--*}

dwStatus := WaitForSingleObject(hAGWSend,INFINITE);

If dwSTATUS <> WAIT_OBJECT_0 then begin

PutAGW(1,'dwStatus <> WAIT_OBJECT_0 returned by WaitForSingleObject');

end; {endif}

If ((cDataKind = 'g') or (cDataKind = 'H') or (cDataKind = 'G')) then begin

PutAGW(1,'SEND to AGWPE:Port {'+inttostr(ord(cPort))+'} DataKind ('+cDataKind+')

Pid=('+inttostr(ord(cPid))+') From <'+szFrom+'> To <'+szTo+'> Len

('+inttostr(iLen)+')');

end else begin

PutAGW(1,'SEND to AGWPE:Port {'+inttostr(ord(cPort))+'} DataKind ('+cDataKind+')

Pid=('+inttostr(ord(cPid))+') From <'+szFrom+'> To <'+szTo+'> Len

('+inttostr(iLen)+')');

end; {endif}

DumpHex(4,szBuffer);

{*-----------------------*}

{*does we have a live *}

{*connection already? *}

{*If NOT -> Error *}

{*--*}

If Socket = Nil then begin

PutAGW(1,'SEND: Socket = Nil, frame discarded');

ReleaseSemaphore(hAGWSend,+1,Nil);

Result := FALSE;

Exit;

End;

{*-----------------------*}

{*Init buffer and temp *}

{*areas *}

{* *}

{*--*}

szFrame := '';

szFromAux := szFrom;

szToAux := szTo;

{*-----------------------*}

{*Ensure the whole header*}

{*is filled with nulls *}

{*as well as the callsign*}

{*--*}

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

53 of 76 12/20/23, 20:32

szFrame := PadStr(szFrame,AGW_HEADER,NUL);

szFromAux := PadStr(szFromAux,10,NUL);

szToAux := PadStr(szToAux,10,NUL);

{*-----------------------*}

{*Format the frame *}

{* *}

{* *}

{*--*}

szFrame[01] := Chr(ord(cPort)-1); {* Port *}

If szFrame[01] = Chr($FF) then begin

szFrame[01] := Chr($00);

end; {endif}

szFrame[02] := NUL;

szFrame[03] := NUL;

szFrame[04] := NUL;

szFrame[05] := cDataKind; {* LOWord(DataKind) *}

szFrame[06] := NUL;

szFrame[07] := cPID; {* HiWord(bPID) *}

szFrame[08] := NUL;

For Index := 1 to 10 do begin {* From Call *}

szFrame[08+Index] := szFromAux[Index];

end; {endfor}

For Index := 1 to 10 do begin {* To Call *}

szFrame[18+Index] := szToAux[Index];

end; {endfor}

If iLen <= (MAXFRAME-1) then begin

MSB := Trunc(iLen/MAXFRAME);

LSB := Trunc(iLen - (MSB*MAXFRAME));

end else begin

MSB := $00;

LSB := $FF;

end; {endif}

szFrame[29] := chr(LSB); {* Size *}

szFrame[30] := chr(MSB);

szFrame[31] := NUL;

szFrame[32] := NUL;

szFrame[33] := NUL; {* User - Reserved *}

szFrame[34] := NUL;

szFrame[35] := NUL;

szFrame[36] := NUL;

PutAGW(1,'Frame to send to AGWPE is');

DumpHex(1,szFrame+szBuffer);

{*-----------------------*}

{*Efficiency trick *}

{*If there is data send *}

{*with the frame,othewise*}

{*send just the frame *}

{*This will reduce the *}

{*chances for TCP to frag*}

{*--*}

If (iLen = 0) then begin

PutAGW(3,'Send Header');

DumpHex(3,szFrame);

SendAGW(szFrame);

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

54 of 76 12/20/23, 20:32

end else begin

If (iLen <= (MAXFRAME-1)) then begin

PutAGW(3,'Send Header+Data');

DumpHex(3,szFrame+szBuffer);

SendAGW(szFrame+szBuffer);

end else begin

{*-----------------------*}

{*Handles data areas *}

{*longer than 256 bytes *}

{*in sucessive frames *}

{*of up to 256 bytes *}

{*--*}

SendAGW(szFrame+Copy(szBuffer,1,(MAXFRAME-1)));

szBigBuffer := Copy(szBuffer,MAXFRAME,Length(szBuffer)-(MAXFRAME-1));

iBigLen := Length(szBigBuffer);

ReleaseSemaphore(hAGWSend,+1,Nil);

Self.Send(Socket,cPort,cPid,cDataKind,szFrom,szTo,iBigLen,szBigBuffer);

If cDataKind <> 'Y' then begin

Self.Send(Socket,cPort,NUL,'Y',szFrom,szTo,0,'');

end; {endif}

Result := TRUE;

Exit;

end; {endif}

end; {endif}

ReleaseSemaphore(hAGWSend,+1,Nil);

{*-----------------------*}

{*Piggyback a request *}

{*for AGW Status on every*}

{*Data Frame Sent *}

{* *}

{*--*}

If cDataKind = 'D' then begin

Self.Send(Socket,cPort,NUL,'Y',szFrom,szTo,0,'');

end; {endif}

Result := TRUE;

end; { Send }

(*--->>> SendAGW <<<--*)

{* Function to send at low level (TCPIP) the actual frame *}

{*--*}

Procedure TLink.SendAGW(szBuffer : String);

begin { TLink }

PutAGW(1,'Send to AGWPE (TCP/IP)');

DumpHex(1,szBuffer);

If AGWSocket <> Nil then begin

AGWSocket.SendText(szBuffer);

end else begin

PutAGW(1,'AGW Frame IGNORED because AGWPE is not connected');

end; {endif}

end;

Complex?…. A little, however once invested here look what means to send an unproto beacon to all

available ports….

…..
sMessage := ‘Hello World!’+Chr($0D);

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

55 of 76 12/20/23, 20:32

For iPort = 0 to iMaxPorts do begin

Self.Write(Chr(iPort),Chr($F0),’M’,

sMyCall,’BEACON’,Length(sMessage),sMessage);

end;

…..

There could be another couple of zillion ways to do this work (even far more efficiently) and everybody

is encouraged to find it’s own way.

Receive Frames

Receive and processing AGWPE frames isn’t quantum physics nor rocket science, it’s deceptively

simple once a couple of issues are properly addressed.

In order to understand the proper way to process an AGWPE frame a golden rule must be understood.

TCP/IP doesn’t guarantees the data would arrive at the destination blocked in the same way than was

blocked on the transmision end. In other words, AGWPE could send in one end a perfectly formatted

frame complete with header and data at once on a single TCP send call.

At the other end, however, and due to TCP and (specially) IP fragmentation factors, the data could be

made available to the application as it’s received and not necessarily as the same block that has been

sent.

So the application must deal with the following situations.

• The block of data received isn’t a complete frame.

◦ A fragment of the header.

◦ A complete header but incomplete data.

• The block of data received is a complete AGWPE frame.

• The block of data received contains more than one completed AGWPE frame.

• The block of data received contains several completed AGWPE frames and the fragment of one.

So, you could decide to follow this advice and save yourself many hours of frustration and debugging or

find it by yourself the hard way…. “never assume anything about how the data arrives to the

application”

The recommended way to process AGWPE frames is to tackle that activity as three differenciated

stages:

• Receive whatever arrives thru the TCP/IP connection and store it somewhere as a bulk of data

without any attempt to extract any meaning of it (this “somewhere” should be some buffer, big

enough to held several BIG AGWPE frames and persistent across different invocations to the

receiving method).

• Every time data arrives to the application and is stored on the buffer examine this buffer with the

following high level logic:

◦ See if the buffer contains at least 36 bytes already, if not, just go do something else.

◦ If at least 36 bytes exists a complete frame header had arrived, the frame might or might

not have data.

◦ Extract the fields of the header in a way that could be inspected individually.

◦ If the frame has data associated see if there are DataLen bytes after the header at the

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

56 of 76 12/20/23, 20:32

Buffer. If not the frame is not yet completed, leave.

◦ If the frame has DataLen=0 or DataLen<>0 and there are DataLen+36 bytes on the buffer

then extract the data from the buffer.

◦ Format a complete header as discrete variables (Port, DataKind, Pid, From, To and Len)

and the Data Area as a block.

◦ Pass it to a frame handling routine.

◦ If after the removal of the frame just processed there are 36 bytes or more still on the

buffer there is a good chance that another frame is ready for processing, so call

recursively this routine to process it.

• A decoding routine should cascade thru a switch or case structure where every relevant DataKind

is handled, frame types not relevant to the application are then ignored.

This is the method recommended by George (SV2AGW)

Don't assume that you will receive a complete frame,TCPIP may send to your program part

of a frame or more than a frame so the procedure for reading data is like reading from

a file.Read only what you need. Like

A complete frame is HEADER+DATA or just HEADER with no data

1.check to see if in the stream socket there are at least HEADER bytes. If not then

return

2.Examine the header and the DataLen field

3.If the DataLen field is greater than 0 check to see if there are in the stream socket

DataLen bytes.

4.If there are DataLen bytes then read exactly DataLen bytes no more, otherwise wait

until DataLen bytes are available.

5.go to step 1 again till all the frames read.

Follow these steps carefully. If your application is running in the same machine with

agw packet engine then the usal is that you will receive more than a frame ,if the

monitor traffic is large.

Follow some of the routines used by Pedro (LU7DID) written in Delphi4 with the same purpose.

This routine is the OnRead event (some TCP/IP implementation calls it OnDataAvailable) handler, it’s

activated anytime data is ready to be processed from TCP/IP, this is the first stage recommended

previously.

(*--->>> AGWSocketRead <<<---------------------------------------*)

{* Receives the OK from the connection request *}

{*--*}

procedure TLink.AGWSocketRead(Sender: TObject;

Socket: TCustomWinSocket);

Var

szData : String;

begin

PutAGW(3,'Data Available from AGWPE <event>');

szData := Socket.ReceiveText;

DumpHex(3,szData);

If Length(szData) <> 0 then begin

Store(szData);

end; {endif}

end;

The following method decides whether or not completed frames are ready for processing, the Decode

routine is the one actually handling the different frames, see how the routine is called recursively.

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

57 of 76 12/20/23, 20:32

(*--->>> Store <<<--*)

{*Store the information from AGWPE and handles fragmentation issues *}

{*--*}

Function TLink.Store (szReceived : String) : Boolean;

Var

szHeader : String;

MSB : Integer;

LSB : Integer;

Index : Integer;

begin

PutAGW(5,'Received from TCPIP');

DumpHex(5,szReceived);

AGW.Buffer := AGW.Buffer + szReceived;

if AGW.Pending = FALSE then begin

{*----------------------------------*}

{*This is where it comes for a fresh*}

{*packet from AGWPE *}

{*----------------------------------*}

if Length(AGW.Buffer) >= AGW_HEADER then begin

szHeader := Copy(AGW.Buffer,1,AGW_HEADER);

PutAGW(5,'Translated into Header Buffer');

DumpHex(5,szHeader);

If Length(AGW.Buffer) > 0 then begin

AGW.Buffer := Copy(AGW.Buffer,AGW_HEADER+1,Length(AGW.Buffer)-AGW_HEADER);

end; {endif}

AGW.Data := '';

If szHeader[1] = Chr($31) then begin

AGW.Buffer := Copy(AGW.Buffer,2,Length(AGW.Buffer)-1);

Self.Store('');

Result := TRUE;

Exit;

end; {endif}

AGW.cPort := szHeader[1];

AGW.cPort := Chr(ord(AGW.cPort)+1);

AGW.DataKind := szHeader[5];

AGW.cPID := szHeader[7];

AGW.CallFrom := '';

AGW.CallTo := '';

For Index := 9 to 18 do begin

If szHeader[Index] <> NUL then begin

AGW.CallFrom := AGW.CallFrom + szHeader[Index];

end else begin

Break;

end; {endif}

end; {endfor}

For Index := 19 to 28 do begin

If szHeader[Index] <> NUL then begin

AGW.CallTo := AGW.CallTo + szHeader[Index];

end else begin

Break;

end; {endif}

end; {endfor}

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

58 of 76 12/20/23, 20:32

LSB := ord(szHeader[29]);

MSB := ord(szHeader[30]);

AGW.DataLen := MSB*MAXFRAME + LSB;

PutAGW(3,'Just Decoded as Port('+inttostr(ord(AGW.cPort))+')

Kind['+AGW.DataKind+'] {'+HexByte(Ord(AGW.cPID))+'} <'+AGW.CallFrom+

'> <'+AGW.CallTo+'> Len('+inttostr(AGW.DataLen)+') + <<--Store');

{*----------------------------------*}

{*If DataLen is zero there is no *}

{*data, HOWEVER other frames could *}

{*be pending as well *}

{*----------------------------------*}

If (AGW.DataLen = 0) then begin

{*----------------------------------*}

{*A frame were received and has no *}

{*data, we might call it a complete *}

{*frame so store it on the port *}

{*object. *}

{*----------------------------------*}

AGW.Pending := FALSE;

{*----------------------------------*}

{*Store the frame on that port obj *}

{*----------------------------------*}

PutAGW(3,'Decoded Port{'+inttostr(ord(AGW.cPort))+'}

DataKind['+AGW.DataKind+'] <'+AGW.CallFrom+'> <'+AGW.CallTo+'> {NO DATA}');

Decode(AGW.cPort,AGW.cPID,AGW.DataKind,AGW.CallFrom,AGW.CallTo,0,'');

Result := TRUE;

{*----------------------------------*}

{*Wonder if something else came with*}

{*that frame and still in the buffer*}

{*----------------------------------*}

If Length(AGW.Buffer) = 0 then begin

{*----------------------------------*}

{*Buffer is empty, see ya next time *}

{* *}

{*----------------------------------*}

end else begin

{*----------------------------------*}

{*Ooops, something else there *}

{*recurse on myself to process *}

{*----------------------------------*}

Result := Self.Store('');

end; {endif}

Exit;

end; {endif}

{*----------------------------------*}

{*If DataLen is NOT zero then *}

{*continue processing the buffer to *}

{*see if we could extract the data *}

{*----------------------------------*}

Result := Self.FragFrame;

Exit;

end; {endif}

end else begin

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

59 of 76 12/20/23, 20:32

Result := Self.FragFrame;

Exit;

end; {endif}

Result := TRUE;

end;

(*--->>> FragFrame <<<--*)

{*Method to handle the likely fragmentation of frames over a TCPIP link *}

{*--*}

Function TLink.FragFrame : Boolean;

begin { TLink }

{*----------------------------------*}

{*If DataLen is NOT zero then *}

{*continue processing the buffer to *}

{*see if we could extract the data *}

{*----------------------------------*}

If Length(AGW.Buffer) >= AGW.DataLen then begin

AGW.Data := Copy(AGW.Buffer,1,AGW.DataLen);

If Length(AGW.Data) < Length(AGW.Buffer) then begin

AGW.Buffer:= Copy(AGW.Buffer,Length(AGW.Data)+1,Length(AGW.Buffer)-

Length(AGW.Data));

end else begin

AGW.Buffer := '';

end; {endif}

AGW.Pending := FALSE;

{*----------------------------------*}

{*Store the frame on that port obj *}

{*instance *}

{*Same solution than previous *}

{*----------------------------------*}

PutAGW(3,'Decoded (Frag) Port{'+inttostr(ord(AGW.cPort))+'}

DataKind['+AGW.DataKind+'] <'+AGW.CallFrom+'> <'+AGW.CallTo+'>

Len=('+inttostr(AGW.DataLen)+') Data: '+AGW.Data);

Decode(AGW.cPort,AGW.cPID,AGW.DataKind,AGW.CallFrom,AGW.CallTo,AGW.DataLen,AGW.Data);

Result := TRUE;

{*----------------------------------*}

{*Wonder if something else came with*}

{*that frame and still in the buffer*}

{*----------------------------------*}

If Length(AGW.Buffer) = 0 then begin

{*----------------------------------*}

{*Buffer is empty, see ya next time *}

{* *}

{*----------------------------------*}

end else begin

{*----------------------------------*}

{*Ooops, something else there *}

{*recurse on myself to process *}

{*----------------------------------*}

Result := Self.Store('');

end; {endif}

Exit;

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

60 of 76 12/20/23, 20:32

end else begin

AGW.Pending := TRUE;

Result := FALSE;

Exit;

end; {endif}

Result := TRUE;

end; { TLink }

Last, but not least, the actual actions for each frame received, this is a method very application specific

so only the skeleton is provided as a sample (despite its length this is a conceptually simple skeleton).

(*--->>> Decode <<<--*)

{*Procedure to decode, validate and route a received frame *}

{*--*}

Procedure TLink.Decode (cPort : Char;

cPID : Char;

cDataKind : Char;

szFrom : String;

szTo : String;

iDataLen : DWORD;

szData : String) ;

Var

szYourCall : String;

szAuxStr : String;

szInfo : String;

szVIA : String;

IsNew : Boolean;

lpAux : PtrLink;

MSB : Byte;

LSB : Byte;

SysDateTime : TDatetime;

begin { TLink.Decode }

szTo := UpCaseStr(szTo);

szFrom := UpCaseStr(szFrom);

{*-----------------------*}

{*Return of call registr.*}

{*---*}

If cDataKind = ‘X’ then begin

{* Validate our registrations *}

Exit;

end; {* endif *}

{*-----------------------*}

{*Outstanding Frames Call*}

{*---*}

If cDataKind = 'Y' then begin

{* Your code here… *}

Exit;

end; {endif}

{*-----------------------*}

{*Outstanding Frames Port*}

{*---*}

If cDataKind = 'y' then begin

{* Your code here … *}

Exit;

end; {endif}

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

61 of 76 12/20/23, 20:32

{*-----------------------*}

{*MHEARD List *}

{*---*}

If cDataKind = 'H' then begin

PutAGW(1,'AGW Message <H>');

DumpHex(1,szData);

szAuxStr := Parse(szFrom);

PutAGW(1,'AGW Message <H> Parsed From is ('+szAuxStr+') Remaining('+szFrom+')');

If szAuxStr <> '' then begin

ParseHeard(cPort,szData);

end; {endif}

PutAGW(1,'AGW Message <H> End of Message');

Exit;

end; {endif}

{*-----------------------*}

{*PARAMS List *}

{*---*}

If cDataKind = 'g' then begin

PutAGW(5,'AGW Message <g>');

ParseParam(cPort,szData);

PutAGW(3,'End of processing Message <g>');

Exit;

end; {endif}

{*-----------------------*}

{*AGWPE KISS Raw Frame *}

{*---*}

If cDataKind = 'K' then begin

PutAGW(5,'AGW Message <K>');

DumpHex(5,szData);

{*------- Here Decode the Raw Frame ------*}

RawDecode(szData,szFrom,szTo,szVIA,cDataKind,cPID,iDataLen,szInfo);

szData := szInfo;

Exit;

end; {endif}

{*-----------------------*}

{*AGWPE UNPROTO *}

{*---*}

If cDataKind = 'U' then begin

PutAGW(5,'AGW Message <U>');

{* Your code here….*}

Exit;

end; {endif}

{*-----------------------*}

{*AGWPE Radio Ports *}

{*---*}

If cDataKind = 'G' then begin

PutAGW(5,'AGW Message <G>');

ParsePort(szData);

Exit;

end; {endif}

{*-----------------------*}

{*AGWPE Version *}

{*---*}

If cDataKind = 'R' then begin

PutAGW(5,'AGW Message <R>');

If VersionFlag = FALSE then begin

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

62 of 76 12/20/23, 20:32

VersionFlag := TRUE;

If Length(szData) >= 8 then begin

LSB := ord(szData[1]);

MSB := ord(szData[2]);

AGWVerHigh := MAXFRAME * MSB + LSB;

LSB := ord(szData[5]);

MSB := ord(szData[6]);

AGWVerLow := MAXFRAME * MSB + LSB;

PutAGW(1,'AGWPE Version '+inttostr(AGWVerHigh)+'-'+inttostr(AGWVerLow));

end; {endif}

end; {endif}

Exit;

end; {endif}

{*-----------------------*}

{*CONNECT Event Handler *}

{*---*}

If cDataKind = 'C' then begin

PutAGW(5,'AGW Message <C>');

IsNew := FALSE;

szYourCall := '';

If Pos('CONNECTED To',szData) <> 0 then begin

szAuxStr := Parse(szData);

szAuxStr := Parse(szData);

szAuxStr := Parse(szData);

szAuxStr := Parse(szData);

szYourCall:= Parse(szData);

IsNew := TRUE;

PutAGW(1,'Connection initiated by station '+szYourCall);

end; {endif}

If Pos('CONNECTED With',szData) <> 0 then begin

szAuxStr := Parse(szData);

szAuxStr := Parse(szData);

szAuxStr := Parse(szData);

szAuxStr := Parse(szData);

szYourCall:= Parse(szData);

IsNew := FALSE;

PutAGW(1,'Connection initiated by us with station '+szYourCall);

end; {endif}

{*-----------------------*}

{*We are looking for a *}

{*connection we started *}

{*---*}

If IsNew = FALSE then begin

{* Your code here to handle a connection started by us *}

end; {endif}

{*-----------------------*}

{*We are looking to serve*}

{*an unsolicited connect *}

{*---*}

If IsNew = TRUE then begin

{* Somebody connected us, so handle it….*}

end;

end; {endif} {*-- This is the Footer of the whole <C> event handler --*}

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

63 of 76 12/20/23, 20:32

{*-----------------------*}

{*DISC Event Handler *}

{*---*}

If cDataKind = 'd' then begin

{*First look at IC link *}

PutAGW(1,'Disconnect Frame: '+szData);

If ((Pos('DISCONNECTED',szData) <> 0) and

(Pos('RETRYOUT',szData) <> 0)) then begin

PutAGW(2,'Disconnection by Retryout detected');

end else begin

If ((Pos('DISCONNECTED',szData) <> 0) and

(Pos('From',szData) <> 0)) then begin

PutAGW(2,'Normal Disconnection detected');

end else begin

If ((Pos('DISCONNECTED',szData) <> 0) and

(Pos('With',szData) <> 0)) then begin

PutAGW(2,'AbNormal Disconnection detected, swap From<->To');

szAuxStr := szFrom;

szFrom := szTo;

szTo := szAuxStr;

end else begin

PutAGW(2,'Bogus Disconnection form detected, ignored');

Exit;

end; {endif}

end; {endif}

end; {endif}

{* Process the remaining of the disconnection *}

Exit;

end; {endif}

{*-----------------------*}

{*DATA Event Handler *}

{*---*}

If cDataKind = 'D' then begin

{* DO whatever it fits with the Data from a connected partner *}

Exit;

end; {endif}

PutAGW(3,'AGW Message not processed <'+cDataKind+'>');

end; { TLink.Decode }

Format VIA Areas

The way a digipeater string is informed to AGWPE seems intrincated and terrible on first look, but it’s

rather simple actually, see on how to create the data area in C++ (code excerpt from George, SV2AGW).

char str[100];

str[0]=HowManyDigis;

str+1=1digi;//null terminated

str+1+10=2digi;//null terminated

str+1+20=3digi//null terminated

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

64 of 76 12/20/23, 20:32

A more comprehensive routine to prepare a VIA list in C++ (also from George, SV2AGW) follows

int PrepareViaList(char *InVia,char *OutVia)

{

//InVia string contains the via list like SV2AGW,SV2BBO,SV2DFK

//OutVia is the same list suitable prepared for AGWPE

char *token;

char temp[15];

char HowVia=0;

token=strtok(InVia,", ");

if (token)

{

HowVia++;

strcpy(temp,token);

memmove(OutVia+1,temp,10);

}

for (;;)

{

token=strtok(NULL,", ");

if (token)

{

strcpy(temp,token);

memmove(OutVia+1+(HowVia*10),temp,10);

HowVia++;

} else break;

}//end for

OutVia[0]=HowVia;

return((HowVia*10)+1);

}

The following function does about the same, only in Delphi4 and written by Pedro (LU7DID); the

routine accepts a string with the list of callsigns+SSID to be used as digipeaters and returns a data area

directly in the format AGWPE likes it.

(*--->>> FormatVIA <<<--*)

{*Routine to format the VIA path in the particular way AGWPE likes it *}

{*--*}

Function FormatVIA (InStr : String) : String;

Var

AuxStr : String;

CountVIA : Byte;

ArrayVIA : Array[0..256] of Char;

Index : Integer;

Token : String;

PtrVIA : Byte;

Jndex : Integer;

begin { FormatVIA }

For Index := 0 to 256 do begin

ArrayVIA[Index] := NUL;

end; {endfor}

AuxStr := InStr;

PtrVIA := 1;

CountVIA := 0;

While AuxStr <> '' do begin

Token := Parse(AuxStr);

If Token <> '' then begin

For Jndex := 1 to Length(Token) do begin

ArrayVIA[Jndex-1+PtrVIA] := Token[Jndex];

end; {endfor}

ArrayVia[Length(Token)+1+PtrVIA] := NUL;

PtrVIA := PtrVIA + 10;

inc(CountVIA);

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

65 of 76 12/20/23, 20:32

end; {endif}

end; {endwhile}

If PtrVIA <> 1 then begin

AuxStr := '';

ArrayVia[0] := chr(CountVIA);

For Index := 0 to PtrVIA-1 do begin

AuxStr := AuxStr + ArrayVia[Index];

end; {endfor}

Result := AuxStr;

Exit;

end else begin

Result := '';

Exit;

end; {endif}

end; { FormatVIA }

Parsing Port Information

This code excerpt written in Delphi4 shows how to “chain” port information sent by AGWPE with

request for further information to AGWPE, this routine/method should be originally called from the

main dispatcher switch when a frame with DataKind=’G’ is received.

(*--->>> ParsePort <<<--*)

{*Procedure to decode, validate and store information about ports *}

{*--*}

Procedure TLink.ParsePort(szPort : String);

Var

PortNum : Integer;

AuxStr : String;

RadioPort : Integer;

cPort : Char;

bPort : Byte;

Index : Integer;

begin { TLink }

AGWPortInit;

PutAGW(3,'Port String is '+szPort);

PortNum := strtoint(PopBang(szPort,';'));

PutAGW(3,'Parsed Number of Ports is '+inttostr(PortNum));

RadioPort := 1;

While PortNum > 0 do begin

{*----------------------------------*}

{*Store the port description *}

{*----------------------------------*}

AuxStr := PopBang(szPort,';');

Ports[RadioPort].PortStr := GetStrZ(AuxStr);

Ports[RadioPort].Enabled := TRUE;

{*----------------------------------*}

{*Initialize the MHEARD structure *}

{*for the port and pull a refresh *}

{*----------------------------------*}

bPort := Trunc(RadioPort);

cPort := chr(bPort);

For Index := 1 to MAXHEARD do begin

Ports[RadioPort].HeardStr[Index] := '';

end; {endfor}

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

66 of 76 12/20/23, 20:32

{*----------------------------------*}

{*Pull outstanding info, heard and *}

{*capabilities info *}

{*----------------------------------*}

Send(AGWSocket,cPort,NUL,'y','','',0,'');

Send(AGWSocket,cPort,NUL,'H','','',0,'');

Send(AGWSocket,cPort,NUL,'g','','',0,'');

PutAGW(3,' Stored RadioPort # '+inttostr(RadioPort)+' as

+Ports[RadioPort].PortStr);

inc(RadioPort);

dec(PortNum);

end; {endwhile}

Port Capabilities

This is the C++ structure recommended by George (SV2AGW) to held and decode the data area with the

port capabilities as provided in the ‘g’ Frame sent by AGWPE.

unsigned char OnairBaud;

unsigned char TrafficLevel;// if this is 255 then the port is not in autoupdate mode

unsigned char TxDelay;

unsigned char TxTail;

unsigned char Persist;

unsigned char Slottime;

unsigned char maxframe;

unsigned char AX25Channels; // How many connections we have

unsigned int HowManyBytes;// how many bytes are received the last 2 minutes

An alternate way, this time in Delphi4 from a code excerpt from Pedro (LU7DID) obtain this

information right out of the data area as received in the ‘G’ frame from AGWPE.

(*--->>> ParseParam <<<--*)

{*Procedure to decode, validate and store information about ports params*}

{*--*}

Procedure TLink.ParseParam(cPort : Char; szData : String);

Var

bPort : Byte;

szAuxStr : String;

begin { TLink }

bPort := Ord(cPort);

If (bPort > 0) and (bPort <= MAXPORT) then begin

end else begin

PutAGW(1,'ParseParam exit with cPort('+inttostr(bPort)+') too high');

Exit;

end; {endif}

PutAGW(3,'Storing Params for Port ('+inttostr(bPort)+')');

Ports[bPort].bOnAirBaud := ord(szData[1]);

Ports[bPort].bTrafficLevel := ord(szData[2]);

Ports[bPort].bTxDelay := ord(szData[3]);

Ports[bPort].bTxTail := ord(szData[4]);

Ports[bPort].bPersist := ord(szData[5]);

Ports[bPort].bSlotTime := ord(szData[6]);

Ports[bPort].bMaxFrame := ord(szData[7]);

Ports[bPort].bAX25Channel := ord(szData[8]);

Ports[bPort].iHowManyBytes := ord(szData[9])+MAXFRAME*ord(szData[10])+

($10000*ord(szData[11]));

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

67 of 76 12/20/23, 20:32

end; { TLink }

Heard Information for a Port

The following Delphi4 code excerpt from Pedro (LU7DID) shows a possible way to decode the heard

information provided on the data area of an ‘H’ frame (note that the data associated with the binary

format is just ignored).

(*--->>> ParseHeard <<<--*)

{*Procedure to decode, validate and store information about ports *}

{*--*}

Procedure TLink.ParseHeard(cPort : Char; szData : String);

Var

bPort : Byte;

iPort : Integer;

Index : Integer;

szAuxStr : String;

szHeardStr : String;

begin { TLink }

bPort := Ord(cPort);

If (bPort > 0) and (bPort <= MAXPORT) then begin

end else begin

PutAGW(1,'ParseHeard exit with cPort('+inttostr(bPort)+') too high');

Exit;

end; {endif}

iPort := bPort;

PutAGW(1,'ParseHeard:');

DumpHex(1,szData);

szAuxStr := szData;

szHeardStr := PopBang(szAuxStr,Chr($00));

For Index := 1 to MAXHEARD do begin

If Ports[iPort].HeardStr[Index] = '' then begin

Ports[iPort].HeardStr[Index] := szHeardStr;

PutAGW(1,'Stored '+szHeardStr+' at Offset ('+IntToStr(Index)+')');

Exit;

end; {endif}

end; {endfor}

PutAGW(1,'Table Full. Not Stored '+szHeardStr);

end; { TLink }

Raw Frames

In case raw frames want to be handled the following Delphi4 routine written by Pedro (LU7DID) could

give you a starting point.

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

68 of 76 12/20/23, 20:32

You must enter the routine (method, actually) with the data frame as received over the air on the ‘K’

frame from AGWPE, the routine would parse and decode the components of that frame.

(*--->>> RawDecode <<<--*)

{*Procedure to decode a Raw KISS frame *}

{*--*}

Procedure TLink.RawDecode(szData : String;

Var szFrom : String;

Var szTo : String;

Var szVIA : String;

Var cDataKind : Char;

Var cPID : Char;

Var iDataLen : DWORD;

Var szInfo : String);

Var

Index : Integer;

AuxChar : Char;

AuxByte : Byte;

szCall : String;

Jndex : Integer;

iCount : Integer;

iFlag : Integer;

begin { TLink }

Index := 2;

szCall := '';

iCount := 1;

iFlag := 1;

szVIA := '';

For Jndex := Index to Length(szData) do begin

AuxChar := szData[Index];

AuxByte := Ord(AuxChar);

szCall := szCall + Chr(((AuxByte and $FE) shr 1));

inc(iCount);

If iCount > 7 then begin

iCount := 1;

If iFlag = 1 then begin

szTo := szCall;

szCall := '';

inc(iFlag);

end else begin

If iFlag = 2 then begin

szFrom := szFrom;

szCall := '';

inc(iFlag);

end else begin

szVIA := szVIA + szCall;

szCall := '';

end; {endif}

end; {endif}

end; {endif}

inc(Index);

If (AuxByte and $01) = $01 then begin

Break;

end; {endif}

end; {endfor}

szCall := szFrom;

szFrom := Parse(szCall);

szCall := szTo;

szTo := Parse(szCall);

AuxChar := szData[Index];

AuxByte := Ord(AuxChar);

If (AuxByte and $FE) = $00 then begin

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

69 of 76 12/20/23, 20:32

cDataKind := 'I';

end else begin

If (AuxByte and $FC) = $01 then begin

cDataKind := 'S';

end else begin

cDataKind := 'U';

end; {endif}

end; {endif}

inc(Index);

cPid := szData[Index];

inc(Index);

szInfo := '';

For Jndex := Index to Length(szData) do begin

szInfo := szInfo + szData[Jndex];

end; {endfor}

PutAGW(2,'Decoded KISS Frame as From=('+szFrom+') To=('+szTo+') VIA('+szVIA+')

DataKind('+cDataKind+') Pid('+HexByte(Ord(cPid))+')');

DumpHex(2,szInfo);

end; { TLink }

Tracking Frames

Some of the frames used for the application to communicate with AGWPE acts like a switch, the first

time sent activates a function, the second de-activates it and so on (i.e. the ‘m’ and ‘k’ frames).

Since AGWPE doesn’t return a “confirming” frame to the requirement the application has to keep track

of the current status if for functional reasons the underlying functions must be alternated as on or off.

A good technique of doing so is to use a “counter” to track how many frames of a given type has been

sent, at any time the value of that counter could be inspected and being odd it would signal the function

is activated while being even it’s inactive.

The general algorithm would be:

• Everytime the connection with AGWPE is established (at the beginning of the execution or

because of a re-connection) the counter bFrame must be set to zero (0x00);

• Everytime a frame under traking is sent the counter must be increased by one and “AND”ed with

7 (0x07 or 0b00000111).

• At any time the value of the counter being even (i.e. multiple of 2) would signal the function is

inactive (0,2,4,….) while being odd (i.e. not multiple of 2) would signal the function is active

(1,3,5,…).

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

70 of 76 12/20/23, 20:32

Managing Connections

Once the basic frame processing is mastered just one additional issue has to be understood for the would

be AGWPE programmer in order to be ready to write applications of any arbitrary complexity, and that

is how to manage AX.25 connections.

Simple applications that involves the processing of some sort of monitoring only doesn’t need to be

bothered by the managing of connections at all, those applications doesn’t even need to register a call to

work properly.

Simple terminal programs could assume that a single user could sustain a single connection using a

single registered callsign, so no complex issues occurs in that scenario.

However, most real world applications would face the need to be able to manage multiple simultaneous

connections possibly using several registered callsigns at once.

The basic issue to solve is assuming a single TCP/IP connection is held between the application and

AGWPE different frames might arrive thru that connection which logically belongs to different

connections and the application is responsible to identify to which particular connection the frame

belongs and to route the relevant information to that connection.

Unfortunately AGWPE doesn’t provide any handle or id that uniquely identify a given connection

among others; this is not needed actually since a close look of the AX.25 protocol provides such unique

identifier as we would see.

Some suggested tactics would be discussed on the following sections.

One Callsign, Many Connections

This is the simplest case, so it’s a good starting point.

The application needs to sustain several AX.25 connections at the same time (i.e. a multiwindow

terminal program) using a single registered callsign.

At first look, the initial attempt of many programmers should be to create different TCP/IP sockets one

for each connection, so frames flowing from AGWPE to the application would be automatically

bucketed into their destination by means of the socket where the data arrived.

Given the relative simplicity to establish TCP/IP sockets from the application standpoint and the fact

that AGWPE could handle a limitless number of simultaneous connections (from any meaningful

number required in the real world) this seems to be the right approach.

But it is not, the main drawback is in the fact that AGWPE only allows a given callsign+SSID to be

registered once across all applications running on a given moment, AGWPE doesn’t really knows nor

care if the multiple sockets were opened from a single application or from many applications.

So the first socket to register a callsign+SSID would take it all, the others would either fail trying to

register the same callsign+SSID or be forced to use different callsign+SSID.

To register a different callsign+SSID for each connection could be both extremely impractical and a

very limited approach, after all AX.25 tolerates just 16 different SSID to be used by callsign (0 to 15),

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

71 of 76 12/20/23, 20:32

and with a fair number of applications running on a typical environment this would quickly become a

limiting factor.

So, the best solution would be for the application to open just a single socket with AGWPE, register a

single callsign with it and manage many connections with the same callsign+SSID.

A limitation of the AX.25 protocol L2 connections come to provide a sort of help, the protocol doesn’t

allow more than one connected session among a pair of callsign+SSID ends, so the combination

From/To (in any order) of any two callsign+SSID has to be unique. Since AGWPE could handle

multiple ports at the same time the uniqueness could be obtained adding the Port to the identification

key.

The overall logic the application should follow is despicted as follows:

• The application should register a callsign+SSID as a part of the initialization cycle.

• A memory structure (a table, a linked list, a double linked list, whatever) should be created and

maintaned by the application with Port,From,To and status. This table would be initially empty.

Additional information closely tied to the application functionality should also be included on

each entry.

• Everytime a ‘C’ frame arrives from AGWPE as an unsolicited connection an entry is created, in

the case the connection had been requested by us the entry might be created at the moment the

connection was requested and the status updated when the connection is actually acomplished.

The application should check at this point if another connection is already active with the same

callsign+SSID pairs and if so refuse to start another connection (that would fail in the AX.25

realm anyway).

• Everytime a ‘D’ frame arrives from AGWPE the application scans the memory structure looking

for a match with the Port/From/To and Port/To/From of the arriving data frame, if an entry is

found the application could use the additional (functionality dependent) information to properly

route the data block (object pointers, window handler, whatever). If an entry is not found the

frame is just discarded or the error is flagged in some meaningful way for the application

context.

• Everytime a ‘d’ frame arrives from AGWPE the application scans for the frame looking to match

the Port/From/To and Port/To/From of it, once an entry is found all the actions associated with

the disconnection are made and the entry is either destroyed or flagged as inactive (so no

additional data frames could be handled by it).

Since this logic would be exercised fairly often the programmer should pay premium attention to the

efficiency of the creation, search and disposal of entries on the memory structure making them as

efficient and fast as possible (or buy an umpteen Mhz Pentium IX iron to run it).

Many CallSigns, Many Connections

In this case the added complexity is the need for the application to register and use any arbitrary number

of callsign+SSID (i.e. on a BBS program some callsigns to accept connections and some others to start

forward sessions).

Again, multiple sockets could be opened, in this case one for each registered callsign, so the case

trivialized itself into many instances of the “One CallSign, Many Connection” just seen in the previous

section.

However, the very logic stated in that case would still be valid for this one, as long as we add a

validation on every connection started that the our involved callsign belongs to a given (and limited)

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

72 of 76 12/20/23, 20:32

authorized set or pool of callsigns.

This control won’t hurt, actually is highly desirable, even on the case a single callsign is used.

Down the Tubes, Climb the Ladder

In fantastic Wonderland bug free programs do exist; however, on Earth this is not true. Programs does

have bugs, plenty of them. Some inocuous enough to survive the entire lifespan of a program and still be

undetected (only triggered for a combination of factors so unlikely that it actually never happens).

AGWPE itself is not an exception, and certainly no application program would be out of that rule.

So the ideal profile of a programmer is a person that it’s moderately paranoid and expect things that

might go wrong from time to time; good programs often differentiate from bad programs that provide

exactly the same functionality just by the extend of how hardened it has been made by it’s author.

Some general guidelines:

• AGWPE is in general terms an stable platform, it could run days or even weeks under heavy use

without any major trap or problem. However, from time to time, it might fail. Prepare your

application to handle unexpected disconnections from AGWPE and recover graciously from

them.

• Whenever a disconnection do occur assume something wrong happened to AGWPE, so don’t

assume anything about the state of execution, just re-init everything as if it would be a fresh start.

AGWPE might fail not because of a resident bug of it, Windows 95/98/NT aren’t themselves the

most stable OS on Earth, sometimes a ill behaved application might push it down the tubes for

no particular good reason (NEVER rule out that is YOUR application the guilty one!!!).

• Don’t trust data you didn’t generated, always extensively check data contents, data ranges,

meaningful values of data that came into your application from the outside; plan for actions

when something non-compliant does arrives, because eventually does arrives.

• The landmark of a novel programmer is to suspect something is wrong with the compiler when a

program doesn’t work; even if it could be true it’s extremely unlikely on most cases. AGWPE is

not a compiler grade bug-free but still is a platform in use by thousands of nodes across the

globe. So if something doesn’t seems to work correctly with your application double check, and

then check again. AGWPE might react in obscure ways when feed with improperly formated

frames or data.

• Keep your feets on the ground at all times, the AGWPE API might lead you think you have a T3

bandwidth at your disposal because everything is transferred so fast; however, if the phisical port

still is 1200 bps over Packet Radio is little what AGWPE could do about, you are just

overwhelming the internal buffers of AGWPE for no good reason and this won’t make your data

move faster. Feed data at volumes that could be handled within reason with the available port

bandwidth, check reasonably often how big your queue is on AGWPE and act accordingly.

• Plan carefully the whole AX.25 cycle your application would use, provide for unexpected events

to happen and still the application provide meaningful results on them.

• Plan for your application to fail miserably from time to time, even for reasons you don’t have

any reasonable clue about at the writing time; use all exception resources your language of

choice provide to handle the “unthinkable” and still end gracefully and if possible leaving a trace

of what happened.

• AGWPE could sustain substantial abuse in terms of the resources and information required by

each application, but still request from AGWPE what you could actually handle. There is no

point on requiring information (i.e. activate monitoring in both conventional and raw formats)

you are not going to actually process. Assume your application would be part on a typical station

of a multiapplication scenario (using application mixes you could not imagine probably), so

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

73 of 76 12/20/23, 20:32

everytime you drag unneded resources you might be impacting other’s application ability to run

smoothly.

• Don’t fall on the typical programmer attitude to consider the world divided into the persons who

write applications and the idiots who uses them; applications are black boxes for end users and

many things you take for granted because you know your program might be obscure and arcane

to a third person, no matter how literate with computers this person might be, just because he

lacks your “common knowledge”. Be forgiving with your user interface and if possible think on

the unthinkable, it might well happen.

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

74 of 76 12/20/23, 20:32

Credits and other stuff

This document is the intellectual property of Pedro E. Colla (LU7DID) and George Rossopoulos

(SV2AGW) and as such is a copyrighted piece subject to international laws covering intellectual

property.

However, it’s usage is free for radioamateur uses as long as the reader understand is using the material

contained on it at his or her own risk, authors doesn’t bear any responsibility on any damage direct or

indirect been made thru the usage of this material.

Excerpts had been taken from other sources and the relevant copyright information provided when this

has been done, the copyright over those parts remains on it’s beholder.

This documentation could be understood as an annotated version of the original “AGW TCPIP Socket

Interface” document originally written by George Rossopoulos (SV2AGW) and included as a

documentation with thw AGWPE package.

AGWPE is copyright© of G.Rossopoulos (SV2AGW) who held it’s property and the right to change any

aspect of the functionality without prior notice.

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

75 of 76 12/20/23, 20:32

[1] As a reference on a 233 Mhz Pentium it could take as little as 4% of the total processor time and less than 4 MBytes of memory (allocated) under a moderate to

heavy port activity. Under idle port conditions the amount of CPU taken might be 0.5% or less.

[2] If (as an example) two 9k6 bps packet ports are serviced the minimum bandwidth between AGWPE and each application should be between 3 X 2 X 9K6 =

57K6 and 4 X 2 X 9k6 = 76K8, so a modern 56K dialup connection would be in the lower end to service such arrangement with reasonable performance, assuming

the effective speed is about 56K bps and not something lower.

[3] TCP/IP addressing is not particularly difficult once understood, however, the author of any program that forces the user to deal with them should be prepared to

expend a great deal of effort to make the configuration of it as user friendly and “foolproof” as possible.

[4] Some oddity of the API, while AGWPE number the ports in the order of creation starting with Port 1 the API reflects the ports in the same order but starting

with 0 (zero). So, the port reflected as Port 1 in the AGWPE Properties dialog would be reflected as 0x00 on the API, Port 2 as 0x01, and so on.

[5] When the callsign plus ssid plus the ending null (0x00) requires less than 10 bytes the remaining bytes of the field are not guaranteed to be cleared, data after the

null (0x00) must be handled as “garbage” and cleared out by the application program. C programmers would handle it nicely (ASCIIZ variables), Pascal

programmers should handle it more carefully.

[6] An exception to this is when the application terminates a link with a ‘d’ frame and inmediately unregisteres the callsign with a ‘x’ frame, in this situation no

further information regarding the fate of the disconnection is sent to the application. In fact, if the unregistration closely follows the ‘d’ frame in such a way that the

frame doesn’t have enough time to be sent the other end will be left “connected”, the connection would be terminated then either by the remote end inactivity

timeout or when a data exchange attempt is made.

Abstract https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM

76 of 76 12/20/23, 20:32

https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref1
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref1
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref1
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref1
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref1
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref2
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref2
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref2
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref2
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref2
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref3
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref3
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref3
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref3
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref3
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref4
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref4
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref4
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref4
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref4
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref5
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref5
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref5
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref5
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref5
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref6
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref6
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref6
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref6
https://www.on7lds.net/42/sites/default/files/AGWPEAPI.HTM#_ftnref6

